
What We Lost When We
Stopped Doing UML
Mike Ritchie, BCS Edinburgh, Oct 1st 2025

This event was made possible by
Skyscanner’s generous support

Your time-travel agenda for this talk

•Present day – a UML refresher

•UML precedents, emergence and growth

•Adoption pains and challenges

•Alternatives and decline

•What we lost

UML is an extensible visual language that is used to

create models of software systems.

UML can show different perspectives of a system's

design, including dynamic views of system

behaviour, as well as static views of the system’s

structure and composition.

class Fourteen Diagram Types

Diagram

Behaviour Structure

Activity State MachineUse Case

Communication Sequence

Interaction

Interaction Overview

Object

PackageComponent

Class

Timing

Deployment Profile

Composite Structure

uc Alert Handling

Emergency Alert Handling

Alert Handler

Private Security

Householder

Initiate Emergency

Response

extension points

Has private security

Notify Householder

Alert Private

Security

Alert Police

Police

Signal Alert

«actor»

Smart Home Safety Hub

«include»«include»

{Has private security}

«extend»

«include»

cmp Component Model

Alert Monitoring External Integrations

Household Security

Smart Hub Firmware

Alerting System

Web App

Emergency

Services

Smart Hub Alerts

Sensor Firmware

Alert Monitoring

Web Application

«service»

Police Response Gateway

Alert Handler

(from

Use Case

Diagram)

Police

(from

Use Case

Diagram)

«interface»

Web API

«interface»

SMTP

«interface»

MQTT

«interface»

Sensor Comms

C

B

A

Component

Web API

Sensor Comms

SMTP

MQTT

deployment Deployment Building Blocks

Execution EnvironmentsSmart Hub DevicesScotIAAS Cloud Platform Devices

ScotIAAS Compute Medium

- region = SCO

- memory = 256MB

- processors = 4

ScotIAAS Compute Small

- region = SCO

- memory = 128MB

- processors = 2

ScotIAAS Relational Cloud DB

- region = SCO

- storage = 20GB

- backup = 40GB

«device»

Smart Sensor

- processor = Arm Cortex-M0+

- flash = 64KB

- memory = 2KB

- speed max = 32MHz

- voltage = 1.8V-3.6V

- OS = FreeRTOS

«device»

Smart Home Hub

- processor = Arm Cortex-A7

- internal SRAM = 128KB

- speed = 650MHz

- internal memory = 160KB

- cache L1 = 32KB

- OS = Embedded Linux-RT

«executionEnvironment»

ScotIAAS Cloud Compute

ScotIAAS Email Service

- region = SCO

«executionEnvironment»

Smart Hub Deployment

- wireless = WiFi 6+

deployment Deployment Artifacts

Components requiring compilation or packaging Deployed As-Is

«executable»

alerting_system.elf

Component Model::

Alerting System

Component Model::

Alert Monitoring Web

Application

«executable»

smart_hub_firmware.elf

«executable»

sensor_firmware.bin

Component Model::

Sensor Firmware

Component Model::

Smart Hub Firmware

«executable»

web_app.npm

«script»

Database Schema

«source»

SQL Stored Procedures

«script»

Email Configuration

«manifest»«manifest» «manifest» «manifest»

deployment Cloud Deployment

«executionEnvironment»

ScotIAAS Cloud Compute

ScotIAAS Compute Medium

- region = SCO

- memory = 256MB

- processors = 4

«executable»

alerting_system.elf

ScotIAAS Compute Small

- region = SCO

- memory = 128MB

- processors = 2

ScotIAAS Relational Cloud DB

- region = SCO

- storage = 20GB

- backup = 40GB

«executable»

web_app.npm
«script»

Database Schema

«source»

SQL Stored Procedures

ScotIAAS Email Service

- region = SCO

«script»

Email Configuration

Police Response

«external»

«executionEnvironment»

Smart Hub Deployment

- wireless = WiFi 6+

deployment Hub Deployment

«executionEnvironment»

Smart Hub Deployment

- wireless = WiFi 6+

«executionEnvironment»

ScotIAAS Cloud Compute

«device»

Smart Home Hub

- processor = Arm Cortex-A7

- internal SRAM = 128KB

- speed = 650MHz

- internal memory = 160KB

- cache L1 = 32KB

- OS = Embedded Linux-RT

«device»

Smart Sensor

- processor = Arm Cortex-M0+

- flash = 64KB

- memory = 2KB

- speed max = 32MHz

- voltage = 1.8V-3.6V

- OS = FreeRTOS

«executable»

smart_hub_firmware.elf

«executable»

sensor_firmware.bin

1 1..*

Proto-UML: The Three Amigos

1992 “OOSE”
Ivar Jacobson et al

1991 “Booch Method”
Grady Booch

1991 “OMT”
James Rumbaugh et al

Rebecca Wirfs-Brock

Bertrand Meyer Steve Cook

Oracle

Mentor Graphics

Lockheed Martin

Hewlett-Packard

Motorola

Fujitsu

Unisys

NASA

IBM

IONA Technologies

..and dozens more.

Professor David Harel

«Stereotypes»

State Charts

Specification growth

Diagrams in UML 1.3 (2000)

• Use Case

• Class

• Statechart

• Activity

• Sequence

• Collaboration

• Component

• Deployment

Diagrams added up to 2.5.1 (2017)

• Profile

• Composite Structure

• Package

• Timing

• Interaction Overview

• Object

UML & RUP, IBM-ified

Ubiquitous UML

Ubiquitous UML

Ubiquitous UML

Ubiquitous UML

Upskill underkill

Training and coaching to support the adoption

of model-based approaches was typically poor

or non-existent.

Analysts, system designers and architects had

to learn how to use a new visual modelling

language, often on top of complex and

unfamiliar modelling tool.

Unsurprisingly, the results of a first foray into

UML were often disappointing.

So very SAD

“Software Architecture Document” aka “SAD”

Many organisations adopted UML but didn’t

put models in the driving seat.

Instead, modelling tools were used for creating

diagrams, to then be pasted into architecture

documents.

Trying to make systems modelling fit into a

document-based process is worse than no

modelling at all.

Model mismanagement

At scale, models need curation, oversight and

review. They never got it, at least in the

experience of this speaker.

A common problem was duplicate definitions

by multiple engineers. These meant duplicating

effort and guaranteed design inconsistencies.

Curator and model librarian roles were needed,

but most organisations either ignored this or

were unaware of the need.

A tool of woe

The early days of UML adoption required

acquisition of new modelling skills, using tools

that were flaky, incomprehensible, or both.

Stability in current modelling tools is far better,

but user interfaces remain challenging.

Most people use a subset of the language and

manage to build enough tool familiarity to be

productive.

Wrong problem, wrong people

I have a bonus one, but I can’t even figure out

how to explain it in a wee text box.

I’ll just tell you instead.

Nemesis: Enter The RUP

Image credit: Dutchguilder, Wikipedia, public domain.

RUP took some explaining

RUP took some explaining

RUP took some explaining

A tale of two timelines

Image credit: Dutchguilder, Wikipedia, public domain.

V

The Agile Switcheroo : UML modelling
class Modelling Alternatives

UML Modelling

Please don't leave me.

Physical Whiteboard

Either ad-hoc notation, or based
around the C4 modelling approach.

C4 Modelling

C4 is a practical and simple way of
describing systems architecture, and can
optionally work with UML notation.

Informal Modelling

«abstract»

Informal here means language
informality, rather than the
physical or virtual medium.

Miro

Remote working accelerated online
collaboration tools. Platforms like
Miro enable informal collaborative
sketching of architecture.

«substitute»

0..1

The Agile Switcheroo : C4 side trip

Simon Brown’s C4 is lightweight

approach to software systems

modelling:

Context
Container
Component
Code

Image © Simon Brown | License CC-By 4.0

The book

https://c4model.com/

https://c4model.com/

The Agile Switcheroo : RUP

class RUP Alternatives

Rational Unified Process

How am I even still here?

Scrum

Lean Agile Process

«abstract»

A multitude of lean-agile processes
have emerged, although based on
the same principles. We show only
two here.

Kanban

«substitute»

The Agile Switcheroo : Use Cases
class Use Case Alternatives

Use Cases

Use Cases give neat mechanisms
in UML showing composition
and actor relationships. Use
Case texts, however, tended to
bloat.

User Stories User Story Mapping

BDD

Figma

«substitute»
0..1

0..1

0..1

The Agile Switcheroo : Software Design
class Software Design Alternatives

Detailed Software Design

This was almost never the
right focus with UML, but
we're elaborating on it here
for these edge cases that still
have a genuine need.

Test-Driven Development

In the hands of a skilled
practitioner, TDD can be a
very effective way of making
continuous small decisions
about code.

Software Metrics

Continuous Refactoring

Pull Request Reviews Pair & Ensemble Programming

Code Review

«abstract»

«substitute»

0..1

0..1

0..1

And then…

And then…

All the
infrastructure
disappeared

The Agile Switcheroo : Infrastructure
class Infrastructure Design Alternatives

UML Infrastructure Modelling

Deployment diagrams, components,

and artifacts were the previous

approach. It's possible this is still being

used. Data is sparse.

Platform-Specific Diagramming

Informal diagrams are common, with

icons specific to the platform (AWS,

Azure, Google Cloud).

«substitute»

Documented DevOps Scripts

In fully automated environments,

scripts are truth. However, it's hard to

communicate these to other

stakeholders.

«substitute»

The squeeze
“Better alternatives”

“Flaky tools”

“Painful adoption”

“Heavyweight processes”

“Bad outcomes”

“Too hard”

“No support”

“Poor leadership”

UML?
Big Design Up Front!
BOOO!

RUP?
Sneaky waterfall!
BOOO!

Bad tools?
Anti-agile!
BOOO!

Nope nope
nope

Schade

“Many organizations will use the UML as a common
language for their project artifacts, but they will use
the same UML diagram types in the context of
different processes.

The UML is intentionally process independent,
and defining a standard process was not a goal of the
UML or OMG's RFP.”

#1 Unified View

of Systems

Knowledge

Great alternatives

emerged, but where

does that knowledge

live?

#2 Fast Impact

Assessment
Models can be

queried, fragmented

representations

cannot.

#3 A Tool for

Learning
What medium exists

now to convey

patterns and idioms?

#4 Architecture

visibility

across roles

Does everyone have a

shared understanding

of the system

architecture?

#5 All The Stuff

You Never

Actually Did

All those “good

alternatives” you

never quite got

around to.

#5 All The Stuff

You Never

Actually Did

All those “good

alternatives” you

never quite got

around to.

How I use UML (some of the time)

uc UML Usage Options

UML Usage

Me

Do Thinky Stuff

How I use UML (when someone’s paying me)
uc UML Usage Options

UML Usage

Me

Do Thinky Stuff

A Colleague

A Different Type Of Colleague

You Get The Idea

Questions!

Links and resources

• Martin Fowler’s UML Distilled is a good starting
point if you’re new to UML or want to refresh your
memory.

• Scott Ambler’s Agile Modelling site is a useful
repository of ideas and techniques.

• Craig Larman’s book Applying UML And Patterns
is a large, but comprehensive work on UML
modelling.

• Simon Brown’s C4 model is an essential read. His
book is on LeanPub, and his website has a video
of one of his talks, which I recommend watching.

• If you like reading standards documents, then the
OMG standards website is the place to go.

• If you want to source any of the books mentioned
in the slides, Amazon will have second hand
copies, and you will likely find them on Abe Books
too.

• Eclipse Papyrus is a free and open source

modelling tool. It’s actively maintained, and a good

place to start.

• Enterprise Architect is a good, mid-priced

professional tool for modelling in UML.

• MagicDraw is one of the best UML tools, but eye-

wateringly expensive. It’s part of the “Catia Magic”

portfolio now, and good luck navigating the

website.

• If you want to do some “model-storming” online,

Miro is the best tool for that job.

https://martinfowler.com/books/uml.html
https://agilemodeling.com/
https://agilemodeling.com/
https://www.craiglarman.com/wiki/index.php?title=Book_Applying_UML_and_Patterns
https://leanpub.com/visualising-software-architecture
https://leanpub.com/visualising-software-architecture
https://c4model.com/
https://www.omg.org/spec/UML/
https://eclipse.dev/papyrus/
https://eclipse.dev/papyrus/
https://eclipse.dev/papyrus/
https://sparxsystems.com/
https://sparxsystems.com/
https://sparxsystems.com/
https://www.3ds.com/products/catia/catia-magic
https://www.3ds.com/products/catia/catia-magic
https://miro.com/diagramming/c4-model-for-software-architecture/

	Introduction
	Slide 1: What We Lost When We Stopped Doing UML
	Slide 2: Your time-travel agenda for this talk

	UML in 5 minutes
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	UML Origins
	Slide 11: Proto-UML: The Three Amigos
	Slide 12

	Expansion and Ubiquity
	Slide 13: Specification growth
	Slide 14: UML & RUP, IBM-ified
	Slide 15: Ubiquitous UML
	Slide 16: Ubiquitous UML
	Slide 17: Ubiquitous UML
	Slide 18: Ubiquitous UML
	Slide 19

	Buyer's Remorse
	Slide 20: Upskill underkill
	Slide 21: So very SAD
	Slide 22: Model mismanagement
	Slide 23: A tool of woe
	Slide 24: Wrong problem, wrong people

	Process Excess
	Slide 25: Nemesis: Enter The RUP
	Slide 26: RUP took some explaining
	Slide 27: RUP took some explaining
	Slide 28: RUP took some explaining

	Industry Evolution
	Slide 29: A tale of two timelines
	Slide 30: The Agile Switcheroo : UML modelling
	Slide 31: The Agile Switcheroo : C4 side trip
	Slide 32: The Agile Switcheroo : RUP
	Slide 33: The Agile Switcheroo : Use Cases
	Slide 34: The Agile Switcheroo : Software Design
	Slide 35: And then…
	Slide 36: And then…
	Slide 37: The Agile Switcheroo : Infrastructure

	Decline
	Slide 38: The squeeze
	Slide 39
	Slide 40: Schade 😞

	Lost and Found
	Slide 41: #1
	Slide 42: #2
	Slide 43: #3
	Slide 44: #4
	Slide 45: #5
	Slide 46: #5

	Readoption
	Slide 47: How I use UML (some of the time)
	Slide 48: How I use UML (when someone’s paying me)
	Slide 49
	Slide 50: Links and resources

