
Clean FE Architecture with Valid Data

The Problem

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 2

The Problem

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 3

The Problem

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 4

When the data arrive in the frontend ...

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 5

... and are distributed to all components ...

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 6

... validity must be checked everywhere.

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 7

When parts of the data are passed on internally ...

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 8

... the issue multiplies.

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 9

The resulting code

export type Data = { a: { b: { c: string } } };

const f = (d: Data): void => {

if (d.a === undefined || d.a.b === undefined

|| typeof d.a.b.c !== "string") {

throw new Error();

}

// do something

};

often riddled with

I error checks
I guard clauses
I error handling

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 10

Problems

I Excessively defensive code is not as readable or maintainable
I Not clear how to handle invalid data

I Throw error? And what then?
I Not clear how to type the received data:

I Missing types (represented by any, unknown, ...) is problematic
I Weak typing (with optional fields etc.) is also problematic
I Normal typing suggests that data is correct and blocks necessary

checks:

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 15

Better Alternative:

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 16

Approach

I Check all data right after receiving them

I Erroneous data can be rejected immediately
I No bad surprises at a later point due to unexpected data

I Domain code is free of data checks

I Types can exactly describe the expected data
I Provides good support for the devs
I No struggle with the type system

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 20

The Difficulty

I No runtime data check in JavaScript
I Not even TypeScript checks at runtime!

I Check needs to be implemented by the devs

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 22

Questions regarding

Clean FE Architecture with Valid Data

?

© 2023 Nicole Rauch. All rights reserved. Clean FE Architecture with Valid Data – Page 23

Approaches for Data Validation

General Approach

I Read and check data

I Standard tool: parser

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 26

First approach: Parser Generator

I Scanner and parser
I Scanner tokenizes the character stream
I Parser recognizes grammatical structures in the token stream
I Two stand-alone applications are generated
I Those are integrated into the own code as “black boxes”

I Advantages:
I Can treat complex and ambiguous languages efficiently
I Widely known

I Disadvantages:
I Sometimes annoying to process the scanner output
I Steep learning curve as it requires to learn the description languages

for scanner and parser

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 29

Example: Thermostat Control

Possible commands:

heat on

Heater on!

heat off

Heater off!

target temperature 22

New temperature set!

Quelle: https://tldp.org/HOWTO/Lex-YACC-HOWTO-4.html

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 30

https://tldp.org/HOWTO/Lex-YACC-HOWTO-4.html

Example: Thermostat Control

Scanner-Description (Lex):

%{

#include <stdio.h>

#include "y.tab.h"

%}

%%

[0-9]+ return NUMBER;

heat return TOKHEAT;

on|off return STATE;

target return TOKTARGET;

temperature return TOKTEMPERATURE;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;

%%

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 31

Example: Thermostat Control
Parser-Description (yacc):

%token NUMBER TOKHEAT STATE TOKTARGET TOKTEMPERATURE

commands: /* empty */

| commands command ;

command: heat_switch

|

target_set ;

heat_switch:

TOKHEAT STATE ;

target_set:

TOKTARGET TOKTEMPERATURE NUMBER ;

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 32

Second Approach: Parser Combinator

I Built from functions
I Simple parser functions take the role of the scanner
I Complex parser functions validate more powerful language constructs

I Advantages:
I Easy to use
I Implementation is straightforward without the need for a generator
I Separate definition languages are not required

I Disadvantages:
I Not very well suited for complex languages
I Parsing process is not easily optimizable

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 35

Example: Thermostat Control
import * as z from "zod";

const ZState = z.union([z.literal("on"), z.literal("off")]);

const ZHeatSwitch = z.object({

heat: ZState

}).required().strict();

const ZTemperature = z.object({

temperature: z.number()

}).required().strict();

const ZTargetSet = z.object({

target: ZTemperature

}).required().strict();

const ZCommand = z.union([ZHeatSwitch, ZTargetSet]);

export const ZCommands = z.array(ZCommand);

export type ICommands = z.infer<typeof ZCommands>;

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 36

Simple Building Blocks

Simple combinator functions deal with constants and variables:

z.literal("on")

z.number()

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 37

Basis: Parser

I parse() deserializes / parses

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 39

More Complex Building Blocks

z.union([z.literal("on"), z.literal("off")])

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 40

Structure of Schema and Datatypes
Modelling data structures with combinator functions:

const ZUser = z.object({

userId: z.number(),

name: z.string()

})

TypeScript type generation:

type IUser = z.infer<typeof ZUser>;

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 43

Usage
Transform data (e.g. JSON string) to JavaScript data:

const myData: unknown = JSON.parse(myString);

Usage when decoding data of unknown format:

const myUserValidation: IUser = ZUser.parse(myData);

Accessing the data through the desired type

try {

const myUserValidation: IUser = ZUser.parse(myData);

} catch (e) {

if(e instanceof Z.ZodError) {

console.log(e);

}

}

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 46

Advantage 1: Support through typing

I Shape of data is laid out in the type system
I Support for developers
I No need for example data to “peek at the structure”

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 47

Advantage 2: Receiver performs Contract Testing

I Unearthes misunderstandings in communication with data provider
I Points out errors in the creation of the received data
I Notifies when an external API was changed (e.g. when we are a

conformist)

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 48

Questions regarding

Approaches for Data Validation

?

© 2023 Nicole Rauch. All rights reserved. Approaches for Data Validation – Page 49

Practical application with ZOD

Setup

https://github.com/NicoleRauch/ValidationCode

Node 14 https://nodejs.org/ npm install

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 51

https://github.com/NicoleRauch/ValidationCode
https://nodejs.org/

Step 1

Type TypeScript codec / combinator
literal ’s’ z.literal(’s’)
null null z.null()
undefined undefined z.undefined()
void void z.void()
string string z.string()
number number z.number()
boolean boolean z.boolean()
unknown unknown z.unknown()
integer BigInt z.bigint()

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 52

Step 2

Type TypeScript codec / combinator
array of type Array<A> z.array(A) or A.array()
tuple [A, B] z.tuple([A, B])

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 53

Step 3

Type TypeScript codec / combinator
record of type Record<K, A> z.record(K, A)
type alias type T = { name: A } z.object({ name: A })
partial Partial<{ name: string }> z.object({ name: z.string

}).partial()
strict - z.object({ name: A }).strict()

I strict: no unknown extra properties

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 54

Step 4

Type TypeScript codec / combinator Remark
union A | B z.union([A, B])
intersection A & B z.intersection(A, B) only two types
keyof keyof M z.keyof(M) creates an enum

schema

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 55

Step 5 - Putting it all together

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 56

Questions regarding

Practical application with ZOD

?

© 2023 Nicole Rauch. All rights reserved. Practical application with ZOD – Page 57

Links

Runtime Validation

Basics

I Parser combinator:
https://en.wikipedia.org/wiki/Parser_combinator

ZOD Documentation:

I https://zod.dev/

Alternative Libraries:

I Schema - https://github.com/Effect-TS/schema
I Commented overview of Joi, Yup, io-ts, Runtypes, Ow:

https://zod.dev/?id=comparison

© 2023 Nicole Rauch. All rights reserved. Links – Page 59

https://en.wikipedia.org/wiki/Parser_combinator
https://zod.dev/
https://github.com/Effect-TS/schema
https://zod.dev/?id=comparison

Branding

Basics:

I https://medium.com/@KevinBGreene/surviving-the-typescript-
ecosystem-branding-and-type-tagging-6cf6e516523d

© 2023 Nicole Rauch. All rights reserved. Links – Page 60

https://medium.com/@KevinBGreene/surviving-the-typescript-ecosystem-branding-and-type-tagging-6cf6e516523d
https://medium.com/@KevinBGreene/surviving-the-typescript-ecosystem-branding-and-type-tagging-6cf6e516523d

Questions regarding

Links

?

© 2023 Nicole Rauch. All rights reserved. Links – Page 61

Thank You!

E-Mail info@nicole-rauch.de

Twitter @NicoleRauch

Web http://www.nicole-rauch.de

Domain-Driven Design · Specification by Example
Software Craftsmanship

React & Redux · TypeScript
Functional Programming

© 2023 Nicole Rauch. All rights reserved. Thank You! – Page 62

mailto:info@nicole-rauch.de
http://twitter.com/NicoleRauch
http://www.nicole-rauch.de

Credits

Einführung: islandworks / 360 images
https://pixabay.com/photos/inside-business-center-interior-1499606/

Parser: Uriel Soberanes
https://unsplash.com/photos/L1bAGEWYCtk

Aufgaben: congerdesign / 4188 images
https://pixabay.com/photos/puzzle-pieces-puzzle-patience-mesh-1925425/

Custom Types: Vishnu Mohanan
https://unsplash.com/photos/vtg8tAdoWVQ

© 2023 Nicole Rauch. All rights reserved. Thank You! – Page 63

https://pixabay.com/photos/inside-business-center-interior-1499606/
https://unsplash.com/photos/L1bAGEWYCtk
https://pixabay.com/photos/puzzle-pieces-puzzle-patience-mesh-1925425/
https://unsplash.com/photos/vtg8tAdoWVQ

