
Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Connect Germany May 2018 (Leipzig)

Understanding availability and performance

Colin Butcher CEng FBCS CITP
Technical director, XDelta Limited

www.xdelta.co.uk

Systems performance engineering



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Lead mission-critical systems projects:
• Strategic planning
• Technical leadership
• Project direction

• Minimise risk of disruption to business:
• Design for change while in continuous operation
• Prepare in advance for ease of transition

• Ensure long term success through skills transfer
• Mentoring and teaching

XDelta – what we do



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Introduction

• Performance concepts and principles

• System platform and infrastructure

• Software and coding

• Design and testing

• Trouble-shooting

Agenda



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• What do we mean by “system” ?

• Performance is only part of the whole problem

Introduction



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

… is a multi-disciplinary and holistic approach to creating something 
to meet a specific purpose.

From the NASA Systems Engineering Handbook, June 1995:

“[Systems engineering] is a field that draws from many engineering
disciplines and other intellectual domains. The boundaries are not
always clear, and there are many interesting intellectual offshoots.”

Systems engineering



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

What constitutes a system ?



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

A system that does not meet its performance requirements or that is
vulnerable to attack is a system that is at risk of being unavailable.

Security features such as encryption, monitoring and alerting can
have significant performance overheads.

Performance related failures are often transient and exceedingly
difficult to fully understand and resolve.

Systems need to have sufficient capacity and inherent performance
to deal with the workload within an acceptable period of time under
normal, failure and recovery conditions.

Performance, security and availability



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• What is the purpose of the system ?

• What are the consequences of failing to perform ?

• What are our performance criteria ?

• How can we demonstrate that we’ve met them ?

What does success look like ?



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Performance characteristics

• Parallelism

• Scalability

• Abstraction layers

Principles of performance



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Bandwidth – determines throughput
o It’s not just “speed”, it’s “units of stuff per second”

• Latency – determines response time
o Determines how much data is in transit
o Data in transit is at risk if there is a failure

• “Diff latency” (variation of latency with respect to time) or 
“jitter” - determines predictability of response
o Important for establishing timeout values
o Latency fluctuations can cause system failures under peak load

Performance characteristics



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Move from low core count, high clock rate processors to 
high core count, low clock rate processors

• Multiple I/O paths for storage subsystems

• Multiple I/O paths for network interfaces

• Implicit assumption is that parallelism can be achieved

Current technology trends - parallelism



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Understand how your workloads could break down into 
parallel streams of execution:

• Some will be capable of being split into many small 
elements with little interaction

• Some will require very high levels of interaction and 
connectivity

• Some will require high throughput single-stream processing

Parallelism – how can you make use of it ?



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Serialisation of access to data structures

• Synchronisation of access to data structures

• Communication between parallel streams of execution

• Don’t leave it all to the compilers

• Algorithm design is the key to better systems

Exploiting parallelism



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Contention and saturation – running out of capacity
o What else are we sharing our capacity with ?
o Queuing theory

• Increasing the capacity of the overall system:
o “Scale up” or “vertical scaling” – adding resources to a machine or 

buying a bigger machine (CPU count, memory, I/O adapters, etc.)
o “Scale out” or “horizontal scaling” - adding more machines

Capacity and scalability



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

“All problems in computing can be solved by introducing 
another layer of abstraction.”

“Most problems in computing are caused by too many layers 
of complexity.”

We need to strike a balance that is appropriate for the kinds of 
systems we’re building.

Abstraction layers



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• What looks like your dedicated resource is just a slice of a 
much bigger thing over which you may have little control:
o What looks like a network isn’t the whole network
o What looks like a disc isn’t a disc
o What looks like memory isn’t all of memory
o What looks like CPUs aren’t all the CPUs

• The operating system allocates and manages machine 
resources

• It’s even more complicated in a virtualised environment

Using abstraction layers



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• You can’t see everything that’s going on

• The view is often distorted

• Hiding things makes it easier to deal with the bits you’re 
interested in

• Hiding things makes it much harder to understand what’s 
happening, especially with performance related problems

The “Hall of mirrors”



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Data network infrastructure



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Availability – avoid single points of failure

• Traffic segmentation - VLANs

• Traffic management – QoS

• Load balancers

• Firewalls

• Traffic optimisation

Data networks



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• VLANs are used to segment a data network:

o Implemented by using 802.1Q tagging of packets
o Systems can behave as if they are switches and send tagged 

packets for multiple VLANs over the same NIC
o Switch configurations generally map Layer 3 IP V4 subnets to Layer 

2 VLANs and enforce IP routing between VLANs
o Extended VLANs can span multiple sites

• Firewalls and Load balancers

• WAN traffic flows

Data networks - segmentation



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• What happens when network paths fail / recover ?

• What happens when network paths become saturated ?

• Can we use all of the available bandwidth ?

• QoS (Quality of Service)

• End to end encryption brings new challenges for firewalls 
and traffic optimisation

Data networks – performance issues



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Storage infrastructure



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Connectivity between servers and storage devices

• iSCSI – uses data network infrastructure

• Fibrechannel – infrastructure designed for storage data

• SAN fabrics (Storage Area Networks)

• Multi-path devices

Storage networks



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Array controllers - large protected and mirrored caches

• Array controller “hides” the behaviour of the physical 
devices and distributes the I/O load

• Array based operations – snaps, clones

• Performance issues:
o bandwidth to and from the array controller pair
o contention by systems for access to the storage array
o controller processing overheads (eg: RAID 0+1 v RAID 6)

Storage arrays



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• High availability, Disaster tolerance, Disaster recovery

• Synchronous or Asynchronous replication ?

• Maximum I/O write rate limited by distance latency and 
number of information exchanges needed to write data

• Data integrity and performance overhead of checking
• Recovery from failure requires bulk copying to get back to 

fully replicated data

• I/O reads occur from local storage

Multi-site data replication



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

System platform – hardware and OS



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Big high-end multiprocessor systems

• Large “server farms”

• Stand-alone systems for highly secure or mission-critical / 
safety-critical environments

• Current trend is high core count / large memory machines

• Virtualisation runs a hypervisor on the physical hardware 
platform to host many virtual machines

Hardware platforms



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Blade technology brings virtualisation of the system 
infrastructure (chassis components):

• Virtual connections from processing components over 
backplane channels

• Modular systems provide great flexibility of configuration 
and interchangeability of components

Hardware platforms - blades



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Implements parallelism within a single CPU core

• Two co-threads allow one thread to proceed while the other 
thread waits for data or instructions - overlap of memory 
fetch operations

• “CPU” count will appear to double when enabled

• Does this fit your workload ?

• Beware the “idle loop” !

Hyperthreading



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Locality of memory and I/O devices becomes important

• Set memory interleave behaviour at machine firmware level

• How to lay out data structures for equitable access ?

• Understand how the OS uses memory for caches

• How to exploit system for best performance ?

NUMA (non-uniform memory access)



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

NUMA architecture – HPE bl890c-i4 blade



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Share out and arbitrate access to machine resources

• Protect users from each other

• Give the illusion that each user has the machine to 
themselves

• With virtual machines, the hypervisor is a “master” OS with 
the “guests” nested inside

• Java comes with its own run-time environment

Operating systems



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Usually has a limited effect, unless systems are badly set 
up in the first place

• Need to set systems up to suit intended workload (system 
parameters, process quotas, network buffering and packet 
sizes, cache sizes, I/O paths to storage, etc.)

• Most improvements come from working on the code

• Must have metrics to understand behaviour

OS performance tuning



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

“When I use a word, it means just what I choose it to mean -
neither more nor less.”

Humpty Dumpty, Through the Looking Glass,
by Lewis Carroll.

Virtual = .NOT. Physical

Virtualisation and Cloud Services



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Data 
networks

Storage 
arrays

Network paths (VLANs)

Storage paths (SAN)

Users

Data

Blade servers

Hypervisors

Tomcat

Virtual Machines

Operating Systems

Applications

Abstraction layers in a virtual world



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• To the “hypervisor”, each and every virtual machine is a 
workload needing physical hardware resources

• Within a virtual machine, each application (and the 
operating system overhead) is a workload

• What level of interaction is there between the virtual 
machines that run your applications ?

• What happens when your host hardware runs out of 
resources or when virtual machines move to another 
hardware host ?

Workloads in a virtual world



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Your data are not in the same location are you are

• You are entirely dependent on your network connection

• Bandwidth and latency govern the behaviour you get

• Does it matter where your “stuff” actually runs ?

• Unsuitable for high I/O write rate systems

• Unsuitable for low / consistent latency systems

Accessing cloud services



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Design for performance

• Load testing

• Understand the whole system

Design and testing



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Size systems to cope with peaks in workload

• Eliminate “wait states” as best you can

• A faster machine just waits more quickly!
• Don’t make it go faster, stop it going slower
• The fastest I/O is the I/O you don’t do
• The fastest code is the code you don’t execute
• The idle loop is anything but idle

Designing for performance



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• How does your code scale up ?

• Separate out static data from dynamic data

• Minimise frequently executed code paths

• How to reduce impact on system and surrounding network
and storage infrastructure ?

• Think parallel, not sequential

Code paths and data flows



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• A uniprocessor machine can only execute one code stream 
at once – there is no inherent parallelism

• Check for code making assumptions that the system is a 
uniprocessor machine:
o Flag bits controlling access to an entire memory region
o Loops polling for flag bit status changes
o Data structures not protected from operations that may 

happen in parallel instead of sequentially
• Use the OS mechanisms (locks) to serialize and 

synchronize access to data structures
• Minimize wait states by having appropriate granularity of 

access to data structures
• Take null locks out, then simply convert them as needed

Writing scalable code



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Generate the Instruction and Data streams for processing 
by the system

• Different types of instructions and data are split out into 
separate sections (shared data, read-only data, local read-
write data etc.) for use by the linker

• Generate code for target machine architecture
• Optimisation re-orders the code to take advantage of 

hardware parallelism and processing efficiencies
• Generate debug information
• Linker lays out the image address space and provides 

hooks for the image activator

Compilers



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Ability to make use of hardware parallelism
• Granularity of data structures
• Synchronisation techniques
• Serialisation techniques
• Scalability techniques
• Compilers
• Application design

• Designing and writing very good code requires very good 
programmers

Limits to software performance



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Physical I/O operations typically take a few milliseconds to 
complete

• We can execute a lot of CPU instruction cycles in a few 
milliseconds (1 GHz = 1 nanosecond, thus 1 million 
instruction cycles per millisecond)!

I/O performance v CPU performance



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Code analysis tools can help with finding interactions and
heavily executed code paths

• Build instrumentation into your software, then you don’t
change its behaviour by adding temporary code

• Pay attention to state transitions and event timing

• Wait states and cache synchronisation are expensive

Analysis tools and instrumentation



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• How can we simulate realistic scenarios ?

• Test for scale, not just functionality

• Test to find out what really happens under load and under
failure conditions

• Performance failures are usually transient, so how will you
capture fine-grained enough data to capture a problem ?

Testing



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Understand the whole system

• Performance data and trend analysis

• “It’s slow” – what next ?

Trouble-shooting



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Without data for historical comparison, how do we know
what’s reasonable ?

• Without data, we’re guessing

• Data needs to be synchronised in time across everything

• Don’t jump to conclusions – correlation does not imply
causation

• Most problems are combinations of several things

Performance data and trend analysis



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• What do they mean:
• Is it responding poorly ?
• Is the responsiveness varying too much ?
• Are batch jobs running slowly ?
• How long are key business processes taking ?

• Is the expectation unreasonable ?
• Has it always been like that, but something else has

changed recently ?
• Is there anything wrong at all ?

“It’s slow” !



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• How can we segment a system to minimise performance
impact and failure propagation ?

• How can we protect against data loss and corruption ?

• Recovery from failure usually has most impact: eg: data
replication back to a known good state

• How quickly do we need to recover ?

• How much data are we prepared to lose ?

Interactions and unexpected effects



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Too many implementation decisions are based on cost
without fully understanding the trade-offs

• Most systems are I/O write rate limited:
• Inappropriate use of virtualisation
• Inadequate bandwidth between data centres
• Too great a distance between data centres

• Systems don’t scale well:
• Inappropriate use of non-compiled languages (eg: Java)
• Code not suited to parallelism with many instances
• Poor database schema design – insufficient granularity

Typical problems



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• Performance cannot be considered in isolation

• Think parallel, not sequential !

• Performance can’t be easily added later

• Testing must include realistic loads and scenarios

• Trouble-shooting and resolution requires good information
and a thorough understanding of the whole system

Summary



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

• You usually get what you pay for !

Conclusion

Good

Fast Cheap



Copyright © XDelta Limited, 2018 www.xdelta.co.uk

Connect Germany May 2018 (Leipzig)

Thank you for your participation

Colin Butcher CEng FBCS CITP
Technical director, XDelta Limited

www.xdelta.co.uk

Systems performance engineering


	Systems performance engineering
	XDelta – what we do�
	Agenda
	Introduction
	Systems engineering
	What constitutes a system ?
	Performance, security and availability
	What does success look like ?
	Principles of performance
	Performance characteristics
	Current technology trends - parallelism
	Parallelism – how can you make use of it ?
	Exploiting parallelism
	Capacity and scalability
	Abstraction layers
	Using abstraction layers
	The “Hall of mirrors”
	Data network infrastructure
	Data networks
	Data networks - segmentation
	Data networks – performance issues
	Storage infrastructure
	Storage networks
	Storage arrays
	Multi-site data replication
	System platform – hardware and OS
	Hardware platforms
	Hardware platforms - blades
	Hyperthreading
	NUMA (non-uniform memory access)
	NUMA architecture – HPE bl890c-i4 blade
	Operating systems
	OS performance tuning
	Virtualisation and Cloud Services
	Abstraction layers in a virtual world
	Workloads in a virtual world
	Accessing cloud services
	Design and testing
	Designing for performance
	Code paths and data flows
	Writing scalable code
	Compilers
	Limits to software performance
	I/O performance v CPU performance
	Analysis tools and instrumentation
	Testing
	Trouble-shooting
	Performance data and trend analysis
	“It’s slow” !
	Interactions and unexpected effects
	Typical problems
	Summary
	Conclusion
	Systems performance engineering

