
Delivering Heterogeneous 
Programming in C++

Duncan McBain, Codeplay Software Ltd.



© 2016 Codeplay Software Ltd.2

About me
● Graduated from Edinburgh University 3 years ago
● Postgrad course got me interested in GPU programming
● Worked at Codeplay since graduating
● Research projects, benchmarking, debuggers
● Most recently on C++ library for heterogeneous systems



© 2016 Codeplay Software Ltd.3

Contents
•What are heterogeneous systems?

• How can we program them?

• The future of heterogeneous systems



© 2016 Codeplay Software Ltd.4

What are heterogeneous systems
• By this, I mean devices like GPUs, DSPs, FPGAs…
• Generally a bit of hardware that is more specialised than, and 

fundamentally different to, the host CPU
• Specialisation can make it very fast
• Can also be harder to program because of specialisation



© 2016 Codeplay Software Ltd.5

Some definitions
• Host

– The CPU/code that runs on the CPU, controls main 
memory (RAM), might control many devices

• Device
– A GPU, DSP, or something more exotic

• Heterogeneous system
– A host, a device and an API tying them together



© 2016 Codeplay Software Ltd.6

Some definitions
• Kernel

– Code representing the computation to be performed on 
the device.

•Work group
– A collection of many work items executing on a device. 

Has shared local memory and executes same instructions



© 2016 Codeplay Software Ltd.7

Some definitions
● Work item

– A single thread or task on a device that executes in 
parallel

● Parallel for
– Some collection of work items, in many work groups, 

executing a kernel in parallel. In general, cannot return 
anything, and must be enqueued asynchronously



© 2016 Codeplay Software Ltd.8

Example heterogeneous device
● CPUs today can execute instructions out-of-order, 

speculative execution, branch prediction
● Complexity hidden from programmer
● Contrast with e.g. GPU
● Most GPUs have many execution units (~100s), but far fewer 

scheduling units
● Here, all cores must execute same instructions on different 

data



© 2016 Codeplay Software Ltd.9

Example continued
•Modern GPUs look something like this:



© 2016 Codeplay Software Ltd.10

Example continued
• A modern GPU will typically have many (~32) processing 

elements in a block
• There will then be many blocks per GPU
• There is memory shared across all blocks, but this is very slow
• This memory is not generally shared with host CPU
• Fastest to swap out threads waiting for memory reads/writes 

for other threads that can do work



© 2016 Codeplay Software Ltd.11

Other accelerators
• This was a GPU-like architecture, but the ideas apply across 

hardware
• For example, Digital Signal Processors (DSPs) have similarities 

like reduced instruction sets, maybe no virtual memory…
• So how do I program something like that?



© 2016 Codeplay Software Ltd.12

How you program something like that
• Variety of APIs available

– OpenMP/ACC
– CUDA
– OpenCL
– SYCL

• Independent standards that work with languages, but are not 
core parts of a language



© 2016 Codeplay Software Ltd.13

OpenMP/ACC
• “Directive-based” API – decorate standard C with pragmas 

telling the compiler how to parallelise
• Very easy to get started, falls back to linear execution when 

compiler doesn’t support it – might require no changes
• Limited in other areas – need OpenMP 4+ for “accelerator” 

support
• OpenACC is similar, originally targeted NVIDIA devices only



© 2016 Codeplay Software Ltd.14

OpenMP 4 sample
#pragma omp target device

#pragma omp parallel for

for (j = 0; j < N; ++j) {

  int k = sin(PI/12 * j);

}

● Target device means use 
accelerator

● A parallel for is one of the 
most simple parallel 
constructs

● Code is calculating some 
trigonometry, though 
results are discarded



© 2016 Codeplay Software Ltd.15

OpenMP example cont.
• Very simple to get started, as seen
• Allows for more complicated directives – can split work 

between blocks for better scheduling on GPU for example
• However, still somewhat limited – can only affect code in 

pragma blocks
• Lacking in fine-grained control which can lessen your options 

for performant code



© 2016 Codeplay Software Ltd.16

CUDA
• CUDA is a proprietary standard for running parallel code on 

NVIDIA GPUs only
• Since NVIDIA solely develop, performance can be great
• However, you are tied in to one platform
• CUDA allows you to control where data lives, when it is 

transferred and how code is executed
• Code written in one source file with explicit device 

annotations



© 2016 Codeplay Software Ltd.17

CUDA sample



© 2016 Codeplay Software Ltd.18

CUDA sample cont
● Freely available from NVIDIA
● Somewhat easy to integrate – behaves much like ordinary 

C/C++, but requires an additional compile step using nvcc
● Can progressively parallelise by moving more and more 

code to CUDA over time



© 2016 Codeplay Software Ltd.19

OpenCL
• OpenCL is a very similar standard to CUDA
• Cross-platform, open, freely implementable, developed by 

cross-industry group (Khronos)
• Allows for execution on GPU, DSP, even humble CPU
• Host-side C API, quite verbose, but exposes flexibility
• Device-side code written in subset of C99 with extensive 

maths library



© 2016 Codeplay Software Ltd.20

OpenCL continued
• Restrictions on device include no function pointers and no 

recursion
• Hardware in most cases is simply not capable
• In past, so-called kernels were stored as C strings and 

compiled at runtime
• However, recent versions allow intermediate binary data – 

something like Java bytecode or LLVM IR – as mid-way point 
between plain source and device-specific binaries



© 2016 Codeplay Software Ltd.21

OpenCL sample



© 2016 Codeplay Software Ltd.22

Other APIs
● There are still other APIs that are all slightly different and 

solve different problems
● HSA, C++ AMP, Renderscript, Vulkan, DirectCompute…
● They are all relevant (and definitely worth looking into!)



© 2016 Codeplay Software Ltd.23

Common ideas
• All these APIs are somewhat different, but often overlap:

– Kernel code is separate and marked as such (CUDA, 
OpenCL)

– Generally have separate memory between host and 
device (though not necessarily)

– Work best when given broad arrays with same operation 
on each element

– Fundamentally asynchronous – enqueue work & wait 



© 2016 Codeplay Software Ltd.24

SYCL
• SYCL is a newer specification, again from Khronos, similar to 

CUDA but has lots of interesting and different features
• Based on idea that any code can be compiled to intermediate 

language, not just OpenCL C, so why not C++?
• Similarly, we can use C++ function objects to identify kernels 

inside ordinary C++ code – even C++11 lambdas!
• That way, SYCL code is also valid host code – don’t even need 

a device (though it will be slow)



© 2016 Codeplay Software Ltd.25

SYCL continued
• Still maintains restrictions from OpenCL C

– No recursion
– No function pointers
– Kernel return type must be void

• Uses the OpenCL API underneath to talk to devices and do 
work



© 2016 Codeplay Software Ltd.26

SYCL continued
• C++ classes for each of the OpenCL types, wrapping them 

neatly
• Data controlled by buffers and accessors
• In contrast to OpenCL, where the programmer moves data 

around, SYCL lets you describe where you use data
• SYCL then ensures that the data is there for you
• Not just convenient – allows runtime to schedule efficiently



© 2016 Codeplay Software Ltd.27

SYCL example



© 2016 Codeplay Software Ltd.28

SYCL continued
• This looks a lot like C++!

– No separate kernel string like OpenCL C
– No __device like CUDA
– No pragmas like OpenMP

• So why am I showing you this?
• Currently, SYCL is an independent open standard (written by 

the Khronos group) – but what about ISO C++?



© 2016 Codeplay Software Ltd.29

Parallel STL
• Part of C++17, this technical report extends many STL 

algorithms to the parallel domain
•  As simple as adding an execution policy to the function call
• The policy is what allows the library writers to control how 

the code should be parallelised – e.g. POSIX threads, 
distributed computing… or dispatched to an OpenCL device 
via SYCL!



© 2016 Codeplay Software Ltd.30

Parallelism in ISO C++
• Parallel STL makes it clear there is an appetite for improving 

ISO C++’s support for parallelism
• Already work happening in this area – for example, 
std::future

– Can be used to hide the asynchronous part of 
heterogeneous code

– Provides a clean demarcation of parallel code



© 2016 Codeplay Software Ltd.31

Parallelism in Future C++
• There are lots of ideas at the moment, but no decisions
• Committee, as ever, wants to make sure the best proposals 

make it in
• I don’t think any one API shown here tonight is the perfect 

solution, but I think there are lessons from each
• Ultimately requires input from community – anyone can write 

a proposal!



© 2016 Codeplay Software Ltd.32

What about today?
• OpenMP implemented in many compilers
• OpenCL available from many vendors like Intel, AMD etc.
• CUDA available from NVIDIA’s website
• Very Soon, can download ComputeCpp, Codeplay’s 

implementation of SYCL
• Heterogeneous computing will only become more prevalent, 

so never to late to start?



© 2016 Codeplay Software Ltd.33

What about tomorrow?
• C++17 ended up being a smaller release than anticipated
• Committee doesn’t want to introduce ideas that aren’t 

“battle-proven”
• Better to have some non-standard PoC out there early
• Possibly have next version of C++ out earlier than 2020?
• Other bodies not stopping, either – Khronos developing new 

standards all the time



© 2016 Codeplay Software Ltd.34

Useful links
● http://www.nvidia.com/object/cuda_home_new.html
● http://openmp.org/wp/
● https://www.khronos.org/opencl/
● https://www.khronos.org/sycl
● https://github.com/KhronosGroup/SyclParallelSTL
● https://computecpp.codeplay.com/

http://www.nvidia.com/object/cuda_home_new.html
http://openmp.org/wp/
https://www.khronos.org/opencl/
https://www.khronos.org/sycl
https://github.com/KhronosGroup/SyclParallelSTL
https://computecpp.codeplay.com/


@codeplaysoft codeplay.com

We’re
 

Hirin
g!

co
deplay

.co
m/ca

reers/

info@codeplay.com


	Slide 1
	Tips
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

