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About me
● Graduated from Edinburgh University 3 years ago
● Postgrad course got me interested in GPU programming
● Worked at Codeplay since graduating
● Research projects, benchmarking, debuggers
● Most recently on C++ library for heterogeneous systems
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What are heterogeneous systems
• By this, I mean devices like GPUs, DSPs, FPGAs…
• Generally a bit of hardware that is more specialised than, and 

fundamentally different to, the host CPU
• Specialisation can make it very fast
• Can also be harder to program because of specialisation
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Some definitions
• Host

– The CPU/code that runs on the CPU, controls main 
memory (RAM), might control many devices

• Device
– A GPU, DSP, or something more exotic

• Heterogeneous system
– A host, a device and an API tying them together
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Some definitions
• Kernel

– Code representing the computation to be performed on 
the device.

•Work group
– A collection of many work items executing on a device. 

Has shared local memory and executes same instructions
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Some definitions
● Work item

– A single thread or task on a device that executes in 
parallel

● Parallel for
– Some collection of work items, in many work groups, 

executing a kernel in parallel. In general, cannot return 
anything, and must be enqueued asynchronously
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Example heterogeneous device
● CPUs today can execute instructions out-of-order, 

speculative execution, branch prediction
● Complexity hidden from programmer
● Contrast with e.g. GPU
● Most GPUs have many execution units (~100s), but far fewer 

scheduling units
● Here, all cores must execute same instructions on different 

data
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Example continued
•Modern GPUs look something like this:
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Example continued
• A modern GPU will typically have many (~32) processing 

elements in a block
• There will then be many blocks per GPU
• There is memory shared across all blocks, but this is very slow
• This memory is not generally shared with host CPU
• Fastest to swap out threads waiting for memory reads/writes 

for other threads that can do work
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Other accelerators
• This was a GPU-like architecture, but the ideas apply across 

hardware
• For example, Digital Signal Processors (DSPs) have similarities 

like reduced instruction sets, maybe no virtual memory…
• So how do I program something like that?
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How you program something like that
• Variety of APIs available

– OpenMP/ACC
– CUDA
– OpenCL
– SYCL

• Independent standards that work with languages, but are not 
core parts of a language
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OpenMP/ACC
• “Directive-based” API – decorate standard C with pragmas 

telling the compiler how to parallelise
• Very easy to get started, falls back to linear execution when 

compiler doesn’t support it – might require no changes
• Limited in other areas – need OpenMP 4+ for “accelerator” 

support
• OpenACC is similar, originally targeted NVIDIA devices only
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OpenMP 4 sample
#pragma omp target device

#pragma omp parallel for

for (j = 0; j < N; ++j) {

  int k = sin(PI/12 * j);

}

● Target device means use 
accelerator

● A parallel for is one of the 
most simple parallel 
constructs

● Code is calculating some 
trigonometry, though 
results are discarded
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OpenMP example cont.
• Very simple to get started, as seen
• Allows for more complicated directives – can split work 

between blocks for better scheduling on GPU for example
• However, still somewhat limited – can only affect code in 

pragma blocks
• Lacking in fine-grained control which can lessen your options 

for performant code
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CUDA
• CUDA is a proprietary standard for running parallel code on 

NVIDIA GPUs only
• Since NVIDIA solely develop, performance can be great
• However, you are tied in to one platform
• CUDA allows you to control where data lives, when it is 

transferred and how code is executed
• Code written in one source file with explicit device 

annotations
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CUDA sample
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CUDA sample cont
● Freely available from NVIDIA
● Somewhat easy to integrate – behaves much like ordinary 

C/C++, but requires an additional compile step using nvcc
● Can progressively parallelise by moving more and more 

code to CUDA over time
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OpenCL
• OpenCL is a very similar standard to CUDA
• Cross-platform, open, freely implementable, developed by 

cross-industry group (Khronos)
• Allows for execution on GPU, DSP, even humble CPU
• Host-side C API, quite verbose, but exposes flexibility
• Device-side code written in subset of C99 with extensive 

maths library
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OpenCL continued
• Restrictions on device include no function pointers and no 

recursion
• Hardware in most cases is simply not capable
• In past, so-called kernels were stored as C strings and 

compiled at runtime
• However, recent versions allow intermediate binary data – 

something like Java bytecode or LLVM IR – as mid-way point 
between plain source and device-specific binaries
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OpenCL sample
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Other APIs
● There are still other APIs that are all slightly different and 

solve different problems
● HSA, C++ AMP, Renderscript, Vulkan, DirectCompute…
● They are all relevant (and definitely worth looking into!)
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Common ideas
• All these APIs are somewhat different, but often overlap:

– Kernel code is separate and marked as such (CUDA, 
OpenCL)

– Generally have separate memory between host and 
device (though not necessarily)

– Work best when given broad arrays with same operation 
on each element

– Fundamentally asynchronous – enqueue work & wait 
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SYCL
• SYCL is a newer specification, again from Khronos, similar to 

CUDA but has lots of interesting and different features
• Based on idea that any code can be compiled to intermediate 

language, not just OpenCL C, so why not C++?
• Similarly, we can use C++ function objects to identify kernels 

inside ordinary C++ code – even C++11 lambdas!
• That way, SYCL code is also valid host code – don’t even need 

a device (though it will be slow)
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SYCL continued
• Still maintains restrictions from OpenCL C

– No recursion
– No function pointers
– Kernel return type must be void

• Uses the OpenCL API underneath to talk to devices and do 
work
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SYCL continued
• C++ classes for each of the OpenCL types, wrapping them 

neatly
• Data controlled by buffers and accessors
• In contrast to OpenCL, where the programmer moves data 

around, SYCL lets you describe where you use data
• SYCL then ensures that the data is there for you
• Not just convenient – allows runtime to schedule efficiently
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SYCL example
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SYCL continued
• This looks a lot like C++!

– No separate kernel string like OpenCL C
– No __device like CUDA
– No pragmas like OpenMP

• So why am I showing you this?
• Currently, SYCL is an independent open standard (written by 

the Khronos group) – but what about ISO C++?
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Parallel STL
• Part of C++17, this technical report extends many STL 

algorithms to the parallel domain
•  As simple as adding an execution policy to the function call
• The policy is what allows the library writers to control how 

the code should be parallelised – e.g. POSIX threads, 
distributed computing… or dispatched to an OpenCL device 
via SYCL!
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Parallelism in ISO C++
• Parallel STL makes it clear there is an appetite for improving 

ISO C++’s support for parallelism
• Already work happening in this area – for example, 
std::future

– Can be used to hide the asynchronous part of 
heterogeneous code

– Provides a clean demarcation of parallel code
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Parallelism in Future C++
• There are lots of ideas at the moment, but no decisions
• Committee, as ever, wants to make sure the best proposals 

make it in
• I don’t think any one API shown here tonight is the perfect 

solution, but I think there are lessons from each
• Ultimately requires input from community – anyone can write 

a proposal!
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What about today?
• OpenMP implemented in many compilers
• OpenCL available from many vendors like Intel, AMD etc.
• CUDA available from NVIDIA’s website
• Very Soon, can download ComputeCpp, Codeplay’s 

implementation of SYCL
• Heterogeneous computing will only become more prevalent, 

so never to late to start?
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What about tomorrow?
• C++17 ended up being a smaller release than anticipated
• Committee doesn’t want to introduce ideas that aren’t 

“battle-proven”
• Better to have some non-standard PoC out there early
• Possibly have next version of C++ out earlier than 2020?
• Other bodies not stopping, either – Khronos developing new 

standards all the time
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Useful links
● http://www.nvidia.com/object/cuda_home_new.html
● http://openmp.org/wp/
● https://www.khronos.org/opencl/
● https://www.khronos.org/sycl
● https://github.com/KhronosGroup/SyclParallelSTL
● https://computecpp.codeplay.com/

http://www.nvidia.com/object/cuda_home_new.html
http://openmp.org/wp/
https://www.khronos.org/opencl/
https://www.khronos.org/sycl
https://github.com/KhronosGroup/SyclParallelSTL
https://computecpp.codeplay.com/
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