
@sixty_north

Predictive Models of Development Teams
and the Systems They Build

1

Robert Smallshire
@robsmallshire

2

Randomised controlled trials

3

Experimental Science

‣Developers don’t like to be watched

‣Eliminating extraneous factors

‣Toy problems aren’t realistic

‣No two projects are the same

‣Can’t do double-blind

‣Students have little experience

‣Time and money

4

How can we know?

5

Prediction

Comparison

Modelling

Observation

Formulate a hypothesis. Design a conceptual model.
Run simulations.

Observe and record reality.
Validate or refute the model.

1

2

3

4

6

Modelling system growth
How many people work on your system?

Predicting project progress
How many people should work on your system?

Software process dynamics
How can you construct models and run simulations?

1

2

3

Systems and their architectures are long lived
Lifetimes in the software industry

7

Ca
te

go
ry

 Ti
tle

Developers

Windows XP

Applications

CEOs

Lines of code

FTSE100

Classes

Modules

0 15 30 45 60

58

37

22

13

6.8

6.2

4.7

3.1

Sources: Software Lifetime and its Evolution Process over Generations, CEO Succession Practices: 2012 Edition, Investors Chronicle,

Half-lives of software related entities
The number of years over which half the entities are replaced

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

Productivity on 10000 SLOC codebase

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8
Productivity SLOC/year

Productivity on 10000 SLOC codebase

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8
Productivity SLOC/year

Productivity on 10000 SLOC codebase

maxmin mode

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

maxmin mode

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

1
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

maxmin mode

triangular
distribution

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

1
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

0%

50%

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

maxmin mode

triangular
distribution

cumulative
distribution

function

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

1
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

0%

50%

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

maxmin mode

triangular
distribution

cumulative
distribution

function

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

1
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

0%

50%

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

maxmin mode

triangular
distribution

cumulative
distribution

function

0 10000 3000020000

Draw teams at random from a productivity distribution
Simulating Developer Productivity

8

1
Productivity SLOC/year

Productivity on 10000 SLOC codebase

Pr
ob

ab
ilit

y D
en

sit
y

0%

50%

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

maxmin mode

triangular
distribution

cumulative
distribution

function

9

100

1000

10000

100000

1000 10000 100000 1000000 10000000

P
ro

d
u

ct
iv

it
y

(L
in

e
s

o
f

C
o

d
e

 /
 Y

e
ar

)

Total Lines of Code

Use published productivity
data to forward model code
size.

Modelling team and code evolution

10Sources: COCOMO II

At any given system size we
can predict a distribution for
developer productivity.

Dramatically less
productive on larger

code bases
29000

5500

100

1000

10000

100000

1000 10000 100000 1000000 10000000

P
ro

d
u

ct
iv

it
y

(L
in

e
s

o
f

C
o

d
e

 /
 Y

e
ar

)

Total Lines of Code

Use published productivity
data to forward model code
size.

Modelling team and code evolution

10Sources: COCOMO II

At any given system size we
can predict a distribution for
developer productivity.

Dramatically less
productive on larger

code bases
29000

5500

11
5 years

Simulating a team of seven over five years

11
5 years

Simulating a team of seven over five years

11

start with nothing

5 years

Simulating a team of seven over five years

11

start with nothing

some developers
contribute more

5 years

Simulating a team of seven over five years

11

start with nothing

some developers
contribute more

others
less

5 years

Simulating a team of seven over five years

11

start with nothing

some developers
contribute more

others
less

when a developer leaves

5 years

Simulating a team of seven over five years

11

start with nothing

some developers
contribute more

others
less

when a developer leaves

5 years

Simulating a team of seven over five years

 they are replaced

11

start with nothing

some developers
contribute more

others
less

when a developer leaves

After 5 years we
have 235 k lines
of code written

by a total of 
19 people. 

Only 37% of the
code is by

current team

5 years

Simulating a team of seven over five years

 they are replaced

12

12

13

Team Size : 7
3 years

13

157 kLoC

Cumulative team size : 11 ± 2 @ 1σ
Team Size : 7

LoC : 157 k ± 23 k @ 1σ
Author present : 70% ± 14% @ 1σ

3 years

14

Team Size : 21
20 years

14

1.8 MLoC

Cumulative team size : 114 ± 9 @ 1σ
Team Size : 21

LoC : 1.8 M ± 0.08 M @ 1σ
Author present : 19% ± 4% @ 1σ

20 years

Probability density from 1000 simulations
How long for seven to produce 100 000 lines of code?

15

200 400 600 8000
Days

0

0.006
Pr

ob
ab

ilit
y

Probability density from 1000 simulations
How long for seven to produce 100 000 lines of code?

15

probability of
delivery on a
particular day

200 400 600 8000
Days

0

0.006
Pr

ob
ab

ilit
y

Cumulative probability from 1000 simulations

16

How long for 7 to produce 100 000 lines of code?

200 400 600 8000
Days

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

0%

Cumulative probability from 1000 simulations

16

How long for 7 to produce 100 000 lines of code?

200 400 600 8000
Days

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

0%

probability of
delivery before a

particular day

Cumulative probability from 1000 simulations

16

How long for 7 to produce 100 000 lines of code?

200 400 600 8000
Days

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

0%

20%

probability of
delivery before a

particular day

330

Cumulative probability from 1000 simulations

16

How long for 7 to produce 100 000 lines of code?

200 400 600 8000
Days

100%

Cu
m

ul
at

ive
 P

ro
ba

bi
lit

y

0%

20%

80% probability of
delivery before a

particular day

330 470

Most authors of your product quit way back when
Who can you still talk to?

17
days

20% after
20 years

The proportion of
code written by
current team

from the 1968 paper How do committees invent?

18

Conway’s Law

Melvin Conway

“Any organization that designs a
system (defined broadly) will
produce a design whose structure
is a copy of the organization's
communication structure”

integrated over time

19

Modelling system growth
How many people work on your system?

Predicting project progress
How many people should work on your system?

Software process dynamics
How can you construct models and run simulations?

1

2

3

20

20

21

Charles R Knight (1921) Rancho la Brea Tar Pool

22

“Adding manpower to a late
software project makes it later.”

Fred Brooks / The Mythical Man-Month
Wikimedia Commons

How can we know?

23

Prediction

Comparison

Modelling

Observation

Formulate a hypothesis. Design a conceptual model.
Run simulations.

Observe and record reality.
Validate or refute the model.

1

2

3

4

Model systems for improving structures, policies and interventions
System dynamics simulations

‣ Define problem dynamically – over time

‣ Endogenous view of significant dynamics

‣ Model reproduces problem of concern

‣ Derive understanding

24

Events or equations?
Discrete versus continuous modelling

25

Events or equations?
Discrete versus continuous modelling

25

Discrete

‣ Individuals

‣ Populations

‣ Definite events

‣ Probability distributions

‣ Stochastic

‣ Concrete scenarios

‣ Harder to formulate as code

Events or equations?
Discrete versus continuous modelling

25

Discrete

‣ Individuals

‣ Populations

‣ Definite events

‣ Probability distributions

‣ Stochastic

‣ Concrete scenarios

‣ Harder to formulate as code

Continuous

‣ Aggregates

‣ Levels of quantities

‣ Flow rates

‣ Equations

‣ Numerical / analytical solutions

‣ More abstract

‣ Easier to formulate as code

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Source
Supply outside

model boundary

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Source
Supply outside

model boundary

Sink
Repository outside

model boundary

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Source
Supply outside

model boundary

Sink
Repository outside

model boundary

Level
Repository, stock,

or accumulation,
inside model

boundary

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Source
Supply outside

model boundary

Sink
Repository outside

model boundary

Rate
Flows cause

changes in levels

Level
Repository, stock,

or accumulation,
inside model

boundary

Elements of continuous models

26

personnelhiring 
rate

attrition 
rate

desired 
personnel

level

Source
Supply outside

model boundary

Sink
Repository outside

model boundary

Rate
Flows cause

changes in levels

Auxiliary
Constants or
score-keeping

variables

Level
Repository, stock,

or accumulation,
inside model

boundary

Reference behaviour
Brooks' Law

27

time

Reference behaviour
Brooks' Law

27

personnel

time

Reference behaviour
Brooks' Law

27

personnel

productivity

time

28

requirements
(unrealised)

developed
software

software
development

rate

Brooks' Law
model

29

requirements
(unrealised)

developed
software

personnel

software
development

rate

nominal
productivity

Brooks' Law
model

personnel
allocation rate

30

30

Schedule A (Baseline)
!
500 function points
20 personnel
0.1 fps/person/day 
!
250 days to completion

31

requirements
(unrealised)

developed
software

new personnel experienced 
personnel

software
development

rate

assimilation
rate

nominal
productivity

Brooks' Law
model

personnel
allocation rate

32

32

Schedule B
!
500 function points
20 inexperienced personnel
0.08 fps/person/day 
!
313 days to completion

33

requirements
(unrealised)

developed
software

new personnel experienced 
personnel

software
development

rate

assimilation
rate

nominal
productivity

Brooks' Law
model

personnel
allocation rate

34

34

Schedule C
!
500 function points
20 inexperienced personnel
20 day assimilation delay  
!
215 days to completion

35

requirements
(unrealised)

developed
software

new personnel experienced 
personnel

software
development

rate

assimilation
rate

nominal
productivity

experienced
personnel for

training

training
overhead

Brooks' Law
model

personnel
allocation rate

36

36

Schedule D
!
500 function points
20 inexperienced personnel
20 day assimilation delay
25% of an experienced
person needed for training
each new person during
assimilation 
!
220 days to completion

37

requirements
(unrealised)

developed
software

new personnel experienced 
personnel

software
development

rate

assimilation
rate

nominal
productivity

experienced
personnel for

training

communication
overhead

training
overhead

Brooks' Law
model

personnel
allocation rate

38

38

Schedule E
!
500 function points
20 inexperienced personnel
20 day assimilation delay
25% of an experienced
person needed for training
each new person during
assimilation
Abdel-Hamid quadratic
communication overhead  
!
286 days to completion

39

Schedule E
!
500 function points
20 inexperienced personnel
20 day assimilation delay
25% of an experienced
person needed for training
each new person during
assimilation
Abdel-Hamid quadratic
communication overhead  
!
286 days to completion

40

40

Schedule E
Assimilation Delay

Sensitivity Analysis
!

10 day 280 days
20 day 286 days
30 day 292 days

41

requirements
(unrealised)

developed
software

new personnel experienced 
personnel

software
development

rate

assimilation
rate

nominal
productivity

experienced
personnel for

training

communication
overhead

training
overhead

planned
completion

Brooks' Law
model

personnel
allocation rate

42

import brooks.communication
!
!
def initial():
 """Configure the initial model state."""
 return dict(
 step_duration_days=1,
 num_function_points_requirements=500,
 num_function_points_developed=0,
 num_new_personnel=20,
 num_experienced_personnel=0,
 personnel_allocation_rate=0,
 personnel_assimilation_rate=0,
 assimilation_delay_days=20,
 nominal_productivity=0.1,
 new_productivity_weight=0.8,
 experienced_productivity_weight=1.2,
 training_overhead_proportion=0.25,
 communication_overhead_function=brooks.communication.quadratic_overhead_proportion,
 software_development_rate=None,
)
!
!
def intervene(step_number, elapsed_time, state):
 """Intervene in the current step before the main simulation step is executed."""
 return state
!
!
def is_complete(step_number, elapsed_time_seconds, state):
 """Determine whether the simulation should end."""
 return state.num_function_points_developed >= state.num_function_points_requirements
!
!
def complete(step_number, elapsed_time_seconds, state):
 """Finalise the simulation state for the last recorded step."""
 state.software_development_rate = 0
 return state

schedule_e.py

43

import brooks.communication
!
!
def initial():
 """Configure the initial model state."""
 return dict(
 step_duration_days=1,
 num_function_points_requirements=500,
 num_function_points_developed=0,
 num_new_personnel=20,
 num_experienced_personnel=0,
 personnel_allocation_rate=0,
 personnel_assimilation_rate=0,
 assimilation_delay_days=20,
 nominal_productivity=0.1,
 new_productivity_weight=0.8,
 experienced_productivity_weight=1.2,
 training_overhead_proportion=0.25,
 communication_overhead_function=brooks.communication.quadratic_overhead_proportion,
 software_development_rate=None,
)
!
!
def intervene(step_number, elapsed_time, state):
 """Intervene in the current step before the main simulation step is executed."""
 if elapsed_time == 110:
 state.num_new_personnel += 5
 return state
!
!
def is_complete(step_number, elapsed_time_seconds, state):
 """Determine whether the simulation should end."""
 return state.num_function_points_developed >= state.num_function_points_requirements
!
!
def complete(step_number, elapsed_time_seconds, state):
 """Finalise the simulation state for the last recorded step."""
 state.software_development_rate = 0
 return state

schedule_f_5.py

44

44

Schedule F 5
Add 5 new personnel

on day 110
!

Schedule E : 286 days
Schedule F5 : 283 days

45

45

Fred Brooks
was

WRONG!

46

46

Actually…

47

47

Schedule F 10
Add 10 new personnel

on day 110
!

Schedule E : 286 days
Schedule F5 : 283 days
Schedule F10 : 307 days

48

Fred Brooks
was

RIGHT!

49

ValueError: Communication overhead
proportion personnel number 34.9 out
of range

49

ValueError: Communication overhead
proportion personnel number 34.9 out
of range

Model limitations
!

Prevent extrapolation
outside reasonable

bounds!

50

51

What about cost?

52

What about cost?

52

5760

288
days

What about cost?

52

6625

287
days

5760

288
days

What about cost?

52

6625

287
days

5760

288
days

7900

301
days

What about cost?

52

6625

287
days

5760

288
days

7900

301
days

9865

329
days

53

Modelling system growth
How many people work on your system?

Predicting project progress
How many people should work on your system?

Software process dynamics
How can you construct models and run simulations?

1

2

3

Simulation Tools
‣ iThink / Stella

‣ Vensim

‣ Excel

‣ PowerSim

‣ Simile

‣ etc

54

Program it yourself

‣ Python

‣ Matplotlib (charting)

‣ Pandas (tables, time-series)

‣ Numpy (fast numerics)

55

56

57

Model implementation

https://github.com/sixty-north/brooks

58

Software Process Dynamics

58

Software Process Dynamics

Sure it's fun! But is it useful?

‣ Secure buy-in for modelling and models

‣ Parameterise the model

‣ As simple as possible, but no simpler

‣ Be clear on system boundary / assumptions

‣ Experiment!

‣ Discuss results

59

60

Thank you!

@sixty_north

Robert Smallshire
@robsmallshire

http://sixty-north.com/blog/ 
predictive-models-of-development-teams-and-the-systems-they-build

60

Thank you!

@sixty_north

Robert Smallshire
@robsmallshire

http://sixty-north.com/blog/ 
predictive-models-of-development-teams-and-the-systems-they-build

61

Thank you!

@sixty_north

Robert Smallshire
@robsmallshire

http://sixty-north.com/blog/ 
predictive-models-of-development-teams-and-the-systems-they-build

61

Thank you!

@sixty_north

Robert Smallshire
@robsmallshire

http://sixty-north.com/blog/ 
predictive-models-of-development-teams-and-the-systems-they-build

62

63

