
choices and challenges

James Lewis - February, 2015
jalewis@thoughtworks.com
@boicy

microservices

mailto:jalewis@thoughtworks.com

A	 100-‐YEAR	 COMPANY

Our mission is to better humanity through software and help	
drive the creation of a socially and economically just world.

To run a sustainable
business.

To champion software excellence
and revolutionize the IT industry.

To advocate passionately for
social and economic justice.

GLOBAL	 BUSINESS:	 GLOBAL	 COMMUNITY

OVER	 20	 YEARS	 OF	
THOUGHT	 LEADERSHIP

…to name a few

5

a question

how do you build systems that are

cheap to replace

and which allow you to go
as “fast as possible”?

quick to scale

withstand failure

7

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

http://martinfowler.com/articles/microservices.html

http://martinfowler.com/articles/microservices.html

“It is perfectly true, as philosophers say, that life
must be understood backwards. But they forget the
other proposition, that it must be lived forwards.”
Søren Kierkegaard

11

History
The lawful good product owners of
the publishing house had long lived
in awe and fear of their publishing
systems.

In awe, for they had made a
tremendous amount of Gold, but in
fear of the time taken to change
them, their slowness and their
fragility.

A messenger was sent to fetch help
from a distant land famed for it’s
mighty wizards. You have taken up
the challenge…

link to close

link hello

 close

12

1.
You must save the product owners by
rebuilding their website. You start off
the project . In the course of
discussions you discover that your
goals are three fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:

Summon Walking Skeleton

?

turn to 4

Analysis Paralysis turn to 3

If you have none of these you will
have to draw your sword and fight
(turn to 178)

link to close

link hello

 close

13

3.

You cast Analysis Paralysis at the
Enterprise Architect.

“Foolish young adventurer” says the
architect, “we follow the evolutionary
school of architecture and we shall
have none of the lawful-evil ways of
waterfall”.

The last thing you see before
everything goes dark is the architect
incanting in a strange voice.

You have died. Turn to page 1.

link to close

link hello

 close

14

1.
You must save the product owners by
rebuilding their website. You start off
the project . In the course of
discussions you discover that your
goals are three fold:

1. improve availability
2. improve performance
3. reduce the cost of delay

An Enterprise Architect approaches
and addresses you.

You may use:
S3

Summon Walking Skeleton

?

turn to 4

Analysis Paralysis turn to 3

If you have none of these you will
have to draw your sword and fight
(turn to 178)

link to close

link hello

 close

15

4.

Your walking skeleton coalesces in a
cloud of noxious gasses and solidifies
as a java dropwizard application.

You reach into your backpack and
deploy the content store. Your
walking skeleton reaches out it’s
skeletal arms and grabs armfuls of
raw xml.

Would you like to:

S3Transform the xml inside
the skeleton turn to 6

Use a magic box turn to 5

link to close

link hello

 close

16

5.
You throw the magic box in between
the walking skeleton and the content
store.

A villager approaches and exclaims:
“this beautiful content I see in front
of me seems to take an awful long
time to get here”

You must somehow make the
content arrive faster.

If you have a http cache in your
inventory, you may use it now.

S3Cache in between S3
and content turn to 10

content

Cache in between
skeleton and content turn to 33

link to close

link hello

 close

17

6.
The skeleton gurgles, grunts and
then doubles in size.

A villager approaches and exclaims:
“this beautiful content I see in front
of me seems to take an awful long
time to get here”

You try to add a cache into the
skeleton’s bony skull. First you cast
sticky sessions. With a splash it
rebounds, soaking you in the stench
of the unscalable.

Desperately, you try terracotta and
then the oracle of coherence.
Nothing seems to work. The murky
substances overwhelm you.

You have died. turn to page 1.

link to close

link hello

 close

18

10.
The cache causes the content load
times to drop from 300ms to 150ms.

The villager says “this wonderful
content is now arriving more swiftly
than even the knight-messengers of
the Empress”.

The villagers are happy but all too
soon, all is not well for the content
has a long tail. You must work out
how to refresh the content when it
changes.

You can either:

Refresh the content when
it appears from the ether turn to 150

Trust that it will be fast
enough on first view turn to 22

link to close

link hello

 close

19

22.

The tail is just too long. When
villagers or merchants try to use the
content it is just too slow to arrive.

The amount of Gold diminishes and
over the years the village fades into a
forgotten hamlet, then to a legend
and a myth.

You have died, turn to page 1.

link to close

link hello

 close

20

150.
Content trickles into the store. You
keep up by listening for the new
content and casting “wget” on the
cache to keep it refreshed.

New types of content appears -
content the villagers have never seen
before. Content the walking skeleton
is unable to combat.

Fortunately, through Continuous
Delivery you are able to keep up with
the changed content but the cache
doesn’t. The cache becomes stale.

How will you keep your delivery
continuous?

cast cache shards turn to 255

If you are unable to shard the cache
turn to page 48

link to close

link hello

 close

21

33.
The HTTP cache has an instant effect.
Latency drops from 300ms to 10ms.

Changes to the content mount up.
Every time one of the lawful-good
researches publishes something, the
cache must be refreshed. Every time
the skeleton changes it’s appearance,
the cache must be refreshed.

The vi l lagers need you to do
something. Will you:

link to close

Suffer the long tail turn to 22

Refresh the cache on API
and content changes turn to 150

link hello

 close

22

4.

Your walking skeleton coalesces in a
c loud of noxious gasses and
solidifies as a java dropwizard
application.

You reach into your backpack and
deploy the S3 content store. Your
walking skeleton reaches out it’s
skeletal arms and grabs armfuls of
raw xml.

Would you like to:

Transform the xml inside
the skeleton turn to 6

Use a magic box turn to 5

23

4.

Your walking skeleton coalesces in a
c loud of noxious gasses and
solidifies as a java dropwizard
application.

You reach into your backpack and
deploy the S3 content store. Your
walking skeleton reaches out it’s
skeletal arms and grabs armfuls of
raw xml.

Would you like to:

Transform the xml inside
the skeleton turn to 6

Use a magic box turn to 5

do we split now or later?

is 1000 LoC too big?

are 600 services too many?

there is no such thing as the “right” way

let future you worry about that when you know more

25

when to use microservices

IT DEPENDS!

HELL YEAH!

Are you a startup? Do you have to get to market really soon?

Do you want to exercise options at a later date?

Are you exploring your domain?

more options for replacing

more options for scaling

more options for deploying

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

“Every socket, process, pipe, or remote
procedure call can and will hang. Even
database calls [...]”

M. Nygard, “Release It”

UP

DOWN

Too slow?

UP? DOWN?

Too slow? Where is the problem?

organised around business capabilities

componentisation via services

products not projects

smart endpoints and dumb pipes

decentralised governance

decentralised data management

infrastructure automation

evolutionary design

designed for failure

characteristics of microservices

blue / green deploys

canary releases

infrastructure as code

“I see it all perfectly; there are two possible situations
- one can either do this or that. My honest opinion and
my friendly advice is this: do it or do not do it - you will
regret both.”
Søren Kierkegaard

41

FINAL THOUGHTS

42

43

1. Rule of Modularity: Write simple parts connected by clean interfaces.
2. Rule of Clarity: Clarity is better than cleverness.
3. Rule of Composition: Design programs to be connected to other programs.
4. Rule of Separation: Separate policy from mechanism; separate interfaces from engines.
5. Rule of Simplicity: Design for simplicity; add complexity only where you must.
6. Rule of Parsimony: Write a big program only when it is clear by demonstration that

nothing else will do.
7. Rule of Transparency: Design for visibility to make inspection and debugging easier.
8. Rule of Robustness: Robustness is the child of transparency and simplicity.
9. Rule of Representation: Fold knowledge into data so program logic can be stupid and

robust.
10. Rule of Least Surprise: In interface design, always do the least surprising thing.
11. Rule of Silence: When a program has nothing surprising to say, it should say nothing.
12. Rule of Repair: When you must fail, fail noisily and as soon as possible.
13. Rule of Economy: Programmer time is expensive; conserve it in preference to machine

time.
14. Rule of Generation: Avoid hand-hacking; write programs to write programs when you can.
15. Rule of Optimization: Prototype before polishing. Get it working before you optimize it.
16. Rule of Diversity: Distrust all claims for “one true way”.
17. Rule of Extensibility: Design for the future, because it will be here sooner than you think.

the 17 rules of UNIX programming

45

THE ONE TRUE WAY?

“Any headline which ends in a question mark can be answered by the word no."

BETTERIDGE'S LAW OF HEADLINES

47

The Rule of Diversity
the 16th rule of unix programming

DISTRUST ALL CLAIMS FOR “ONE TRUE WAY”

I see it all perfectly; there are two possible
situations - one can either do this or that. My
honest opinion and my friendly advice is this:
do it or do not do it - you will regret both.

Søren Kierkegaard

think about failure

think

automate

about failure

your infrastructure

think about failure

automate your infrastructure

evolve your system

think automate evolve

James Lewis
jalewis@thoughtworks.com

@boicy

THANKS

think automate evolve

