
Lessons Learned
Breaking the
TDD Rules

Nat Pryce
http://www.natpryce.com

info@natpryce.com
@natpryce

github.com/npryce

“You are not allowed to write any production

code unless it is to make a failing unit test pass.

You are not allowed to write any more of a unit

test than is sufficient to fail; and compilation

failures are failures.

You are not allowed to write any more

production code than is sufficient to pass the

one failing unit test.”

Bob Martin

Fake it ‘til
you make it

Always watch
the test fail

Tests must be
repeatable

Tests must be
isolated

Reset persistent state
before the test, not

afterwards

One assertion
per test

One behaviour
per test

Don’t mock types
you don’t own

Only mock out-
of process
resources

Manage dependencies in
test code the same way
as in production code

Given, When, Then

Avoid “When”
Steps

Integrated tests are a scam

Hide incidental
detailsOne domain

at a time

Test public API,
not private

implementation

Allow queries;
expect commands

Test for information,
not representation

Listen to the
tests

Digital TV PVR

PVR Platform Stack

Electronic Programme Guide

Third-Party Digital TV Middleware

Linux

Clean-Room JVM + JNI Platform Adaptors

MIPS or ARM + TV & PVR hardware

Java

C

A More Realistic View

Electronic Programme Guide

Linux

Clean-Room JVM + JNI Platform Adaptors Broad, async API

Most of the product
functionality

Continually changing
as product evolves

Stabilised towards
end of product cycle

Valuable legacy

MIPS or ARM + TV & PVR hardware

Third-Party Digital TV Middleware

Shock! Testing with Live Data

We know the TV schedule

Functional Test Strategy

EPG

TV Middleware

Linux

JVM + JNI

Hardware

Control
Service

TestQuery UI &
Middleware state

(TCP)

User input
(Infrared)

TV Guide
Database

UPNP

Set Top
Box User TV GuideUI

(Idealised) Functional Test

@Test public void
can_record_free_to_air_programme_from_guide_screen() {
 Showing showing = tvGuide.find(aShowing(
 onAFreeToAirChannel(),
 onAir(now()),
 withDuration(greaterThan(minutes(5)))));

 Activity recordAndPlayShowing =
 on(Guide.SCREEN, Guide.record(showing)).then(
 on(Recordings.SCREEN, Recordings.findAndPlay(showing)));

 SetTopBoxUser user = startUsingSetTopBox();
 user.perform(recordAndPlayShowing);
 user.assertIsOn(FullScreenVideo.SCREEN);
 user.assertThat(FullScreenVideo.isPlaying(showing));
}

Unit-Level Fuzz Testing

JsonResponseParser parser = new JsonResponseParser();

@Test public void parsesResponseSuccessfullyOrThrowsIOException() {
 Mutator<String> mutator = new JsonMutator().forStrings();
 for (String validResponse : validResponses())
 for (String mutant : mutator.mutate(validResponse, 100))
 assertParsesSuccessfullyOrThrowsIOException(mutant);
}

void assertParsesSuccessfullyOrThrowsIOException(String json) {
 try {
 parser.parse(json);
 } catch (IOException _) {
 // allowed
 } catch (Exception e) {
 fail("unexpected exception for JSON input: " + json, e);
 }
}

http://github.com/npryce/snodge

Both Tests have the Same Structure

∀x∈X P(x)

Lesson

Repeatable failure
rather than
repeated success

Lesson

Test automation is
a search problem

CC-BY 2.0 Les Chatfield

http://flickr.com/photos/61132483@N00

Optimising Search-Based Testing

Input Generator Code under Test

Instrumentation

Test

E.g. AFL http://lcamtuf.coredump.cx/afl/

A. Causevic, R. Shukla, S. Punnekkat & D. Sundmark.
Effects of Negative Testing on TDD: An Industrial
Experiment. In Proc. XP2013, June 2013.

“...it is evident that positive test bias (i.e. lack of
negative test cases) is present when [a] test driven
development approach is being followed. …

When measuring defect detecting effectiveness and
quality of test cases … negative test cases were above
70% while positive test cases contributed only by
30%”

N. Nagappan, B. Murphy, and V. Basili. The Influence
of Organizational Structure on Software Quality: an
Empirical Case Study. 2008

“Organizational metrics are better predictors of
failure-proneness than the traditional [software]
metrics used so far.”

more people touch the code → lower quality

loss of team members → loss of knowledge → lower quality

more edits to components → higher instability → lower quality

lower level of ownership (organizationally) → higher quality

more cohesive contributors (organizationally) → higher quality

more cohesive is the contributions (edits) → higher quality

more diffused contribution to a binary → lower quality

more diffused organizations contributing code → lower quality

Organisational Measures

N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig,
and B. Murphy. Change Bursts as Defect Predictors.
2010

“What happens if code changes again and again in
some period of time? … Such change bursts have the
highest predictive power for defect-prone components
[and] significantly improve upon earlier predictors
such as complexity metrics, code churn, or
organizational structure.”

What About Specification by Example?

CC-BY 2.0 Mitch Huang

https://www.flickr.com/photos/mitch98000/
https://www.flickr.com/photos/mitch98000/

Lesson - Separate Concerns

Testing

Living documentation

Understanding
through examples

Specification by Example Tools

Approval Testing Tools

Generate Documentation from Test Log

Very few rules define TDD

Very few rules define TDD

The rest are made to be broken

Very few rules define TDD

Nat Pryce
http://www.natpryce.com

info@natpryce.com
@natpryce

github.com/npryce
speakerdeck.com/npryce

The rest are made to be broken!

