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Talk outline 

•  Introduction to supercomputing 

•  HECToR 
•  From Phase 1 to Phase 3 
•  Introduction to AMD Bulldozer Architecture 
•  Some examples of usage 

•  From the Petascale to the Exascale 
•  What are the next challenges in supercomputing 
•  Why we’re at a key point in the evolution of supercomputing 

•  Thanks due to 
•  Alan Simpson and Jeremy Nowell (EPCC) 
•  George Mozdzynski (ECMWF) 
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EPCC 

•  EPCC is the supercomputing centre at The University of Edinburgh 
•  Founded in 1990 as focus for work in parallel computing 

•  Hosting national HPC services since 1994 for academia 
•  70 staff highly skilled staff 

•  Wide variety of projects and stakeholders 
•  UK Research Councils 
•  Scottish Enterprise 
•  European Commission 
•  Scottish and UK industry 

•  Working with industry and 
commerce since 1990 
•  Software development and consultancy 
•  Provision of on-demand HPC to industry 
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What are FLOPS? 

FLOPS = Floating point Operations Per Second 
 
10 Petaflops = 1016 FLOPS 

= 10,000,000,000,000,000 FLOPS 
 
= 1,000,000 FLOPS for every person on the planet 
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Top500 Evolution 
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Top500 
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source: www.top500.org 

10 petaFLOPS 700000 cores 13 MW 

GPU 

Last update: November 2011 
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The Japanese K-Computer 
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Top 500 – UK 
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The National HPC Service: HECToR 

•  HECToR: UK’s national HPC service  
•  £115M project from 2007-2013 
•  Hosted by EPCC at our Advanced Computing Facility 
•  Cray XE6 system 
•  Recently upgraded to 90,112 AMD Interlagos cores (>800TF) 

•  HECToR partners 
•  RCUK – UK Research funding councils 

•  Led by EPSRC 
•  EPSRC, BBSRC and NERC are the “Partner Research Councils” 
•  But all Research Councils can gain access the system 

•  Including STFC Daresbury Laboratory who provide some of the systems support 

•  EPCC via UOE HPCX Ltd - host and operate the system 
•  Cray Inc – HPC hardware 
•  NAG Ltd – Computational science and engineering support 
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The HECToR Roadmap 

•  In the beginning  

• …but then the new processor was early and 
Gemini was late 

Phase 1 Phase 2 Phase 3 

 Oct 2009   Oct 2011 

Cray XT4                      Cray XT6 + Gemini               ????? 

Phase 1 Phase 3  2a 
 2b 

 2b  
upgrade 

  Jul 2010  Jul 2009 
 Jan 2011 

   Nov 2011 

Cray XT4        quad-core XT4             XT6   +   Gemini      Interlagos 
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HECToR Phase 1 installation in 2007 
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April 
2007 

Edinburgh: Test and Development 
System (one XT4 cabinet) installed  Edinburgh: new building in progress  

August 
2007 

Edinburgh: Full 60 Cabinet System installed  



HECToR Phase 1 at the ACF 
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HECToR Phase 1 Cray XT4 Processing Element 
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HECToR at the ACF until Nov 2011 
•  Phase 2b 

•  20 cabinet Cray XE6 
•  44,544 cores 
•  59.4Tb memory 
•  Gemini interconnect 
•  360 Tflops 

•  Phase 2a (additional 
until May 2011) 
•  33 cabinet Cray XT4 
•  12,288 cores 
•  24Tb memory 
•  1 cabinet Cray X2 with 

112 vector processors 
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HECToR Phase 3 
•  30-cabinet Cray XE6 system 

•  2816 nodes, 90,112 cores 

•  Each node has 
•  2×16-core AMD Opterons 

(2.3GHz Interlagos) 
•  32 GB memory 

•  Peak of over 830 TF 

•  90 TB of memory 
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HECToR Service 
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A room full of PCs is not a supercomputer 

•  HECToR is expensive 
because of its 
communications 
network 

•  Designed for 
•  High bandwidth 
•  Low latency 

•  Mandatory requirement 
to scale to 100,000+ 
cores 

•  Major Phase 2b 
upgrade was Gemini 
interconnect 
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AMD Bulldozer Architecture 
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Interlagos dual bulldozer-core module 
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Interlagos processor 

•  Each blue square represents a 
module containing two cores 

•  The four modules share a 6MB 
L3 cache 

•  A processor socket consists of 
two dies like this 

 

•  A HECToR node consists of two 
processors 

•  NUMA topology between dies 
and sockets 

•  Hypertransport throughout plus 
link to Gemini interconnect 
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Comparison with Phase 2b nodes 

• What does all this mean for code performance? 

BCS Edinburgh Meeting 

Phase 2b 
(Opteron 61xx) 

Phase 3 
(Opteron 62xx) 

Cores 24 32 

Clock Speed 2.1 GHz 2.3 GHz 

Memory 32 GB (1.3 GB/core) 32 GB (1 GB/core) 

Memory Bandwidth 42.6 GB/s (3.55 GB/s 
per core) 

51.2 GB/s (3.2 GB/s 
per core, 6.4 GB/s per 
module) 
 

Vector Instructions MMX, SSE, SSE2, 
SSE3, SSE4a 

+ SSE4.1, SSE4.2, 
AVX, XOP, FMA4 
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Phase 3 Performance Comparison 
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Scaling to very large core counts 

BCS Edinburgh Meeting 28 2nd May 2012 



Who uses HECToR? 
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Currently we have around 1,800 active users 
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Job Size 
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The Exascale Challenge 
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Supercomputing today 

•  Programming model is one of a set of distinct memories distributed over 
homogeneous microprocessors 
•  Each microprocessor generally runs a Unix-like OS 

•  Data transfers between the microprocessors are managed explicitly by 
the application 
•  With the exception of PGAS languages and some shared-memory technologies 

•  Almost all programs are written in sequential Fortran, C or C++ 

•  The majority use MPI (Message Passing Interface) for data transfers 
between microprocessors 

•  Some applications which exploit parallel threads on each microprocessor 
use a hybrid model 
•  Shared memory on the microprocessor, distributed memory outwith 
•  This holds promise for many applications, but is still rare 

•  There is some use of accelerators – predominately GPGPU – but this is 
not yet mainstream 
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A looming problem … 

•  We are at a complex juncture in the history of supercomputing 

•  For the past 20 years supercomputing has “hitched a lift” on the 
microprocessor revolution driven by the PC and gaming 

•  Hardware has been surprisingly stable  

•  EPCC in 1994 had the 512 processor Cray T3D system 
•  0.0768 TFlops peak 

•  EPCC in 2010 retired the 2,560 processor IBM HPCx system 
•  15.36 TFlops peak – 200 x faster but only 5 x more processors ... 

•  The programming models for these systems were very similar 

•  Today we have the systems with more than 100,000 cores 
•  … and yet the programming model hasn’t changed  
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Hardware is leaving software behind 
•  Hardware is leaving many HPC users and codes behind 

•  Many codes scale to less than 512 cores 
•  These will soon be desktop systems 

•  Less than 10 codes in EU today will scale on capability systems with 
100,000+ cores 
•  HECToR (90,112) and HERMIT (113,664) are already at this level 
•  Germany’s Jugene system has almost 300,000 

•  Many industrial codes scale very poorly – some codes will soon find a 
laptop processor a challenge! 

•  Much hope is pinned on accelerator technology 
•  But this has its own set of parallelism and programming challenges 
•  Many porting projects to GPGPU have taken much longer than expected 

•  Homogeneity " Heterogeneity 
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Software is leaving algorithms behind 

•  (Like the OS) few mathematical algorithms have been designed with 
parallelism in mind 
•  … the parallelism is then “just a matter of implementation” 

•  This approach generates much duplication of effort as components 
are custom-built for each application 
•  … but the years of development and debugging inhibits change and users 

are reluctant to risk a reduction in scientific output while rewriting takes 
place 

•  Exascale brings us to a “tipping point” 
•  Without fundamental algorithmic changes progress in many areas will be 

limited 

•  This doesn’t just apply to exascale 
•  It is apparent in the vast majority of parallel codes today 
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Hardware for exascale 

•  A number of studies have looked at hardware designs for exascale 
•  These have identified key hardware challenges 

•  Power – using today’s technology we would need > 1 GWatts 
•  Memory – both power and performance 
•  Processor – scalability, massive parallelism and power 
•  Resiliency – component failures will be continuous 

•  What can we draw from these studies? 
•  Hardware will have to be designed against a 

power budget 
•  Massive heterogeneous parallelism  

•  Non-homogeneous computing is here 
•  For GPGPUs or MIC – the challenge is the scale of the parallelism 

•  Heterogeneous, highly complex memory and network architectures 

•  Not clear how much exascale systems will be able to influence 
hardware developments 
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System characteristics – Aggressive Strawman (2007) 

Characteristic 
Flops – peak (PF) 997 
 - microprocessors 223,872 
 - cores/microprocessor 742 
Cache (TB) 37.2 
DRAM (PB) 3.58 
Total power (MW) 67.7 
Memory bandwidth (B/s per flops) 0.0025 
Network bandwidth (B/s per flops) 0.0008 
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CRESTA 

•  Collaborative Research into Exascale Systemware, Tools and 
Applications 

•  Developing techniques and solutions which address the most difficult 
challenges that computing at the exascale can provide 

•  Focus is predominately on software not hardware 

•  Funded via FP7 by DG-INFSO 

•  Project started 1st October 2011 

•  Three year duration 

•  13 partners, EPCC project coordinator 

•  €12 million costs, €8.57 million funding 

38 
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CRESTA and hardware co-design 

•  All vendors have the same hardware challenges 

•  CRESTA has Cray as a hardware (and software) partner 
•  We are collaborating with Cray in a hardware context 
•  But our results are valid for all efforts to build exascale systems 
•  … and will be publicly available 

•  It would be possible to build an exascale system today … there’s no 
hardware reason why not 
•  China announced it will build 2 x 100Pflop systems in next 3 years at IESP 

•  But the system will be unusable from a software application point of 
view … and almost certainly the systemware (OS, compilers, 
debuggers, etc.) will struggle too 

•  CRESTA is therefore working from a broad understanding of what 
exascale systems will be like and focussing its efforts on applications 
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Key principles behind CRESTA 

•  Two strand project 
•  Building and exploring appropriate systemware for exascale platforms 
•  Enabling a set of key co-design applications for exascale 

•  Co-design is at the heart of the project. Co-design applications: 
•  provide guidance and feedback to the systemware development process 
•  integrate and benefit from this development in a cyclical process 

•  Employing both incremental and disruptive solutions 
•  Exascale requires both approaches 
•  Particularly true for applications at the limit of scaling today 
•  Solutions will also help codes scale at the peta- and tera-scales 

•  Committed to open source for interfaces, standards and new software 
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Co-design Applications 
•  Exceptional group of six applications used by academia and industry 

to solve critical grand challenge issues 

•  Applications are either developed in Europe or have a large European 
user base 

•  Enabling Europe to be at the forefront of solving world-class science 
challenges 

Application Grand challenge Partner responsible 

GROMACS Biomolecular systems KTH (Sweden) 

ELMFIRE Fusion energy ABO (Finland) 

HemeLB Virtual Physiological Human UCL (UK) / JYU (Finland) 

IFS Numerical weather prediction ECMWF (European) 

OpenFOAM Engineering EPCC / HLRS / ECP 

Nek5000 Engineering KTH (Sweden) 
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CRESTA uses incremental and disruptive approaches 

•  Example: FFTs are a challenge at exascale because 
•  Very large number of HPC applications use them 
•  Distributed memory parallel FFT is already a major performance issue 

today – we accept some FFTs will not scale further 

•  Two approaches: 

Incremental approach Disruptive approach 
•  Through optimisations, 

performance modelling and co-
design application feedback 

•  Look to achieve maximum 
performance at exascale and 
understand limitations e.g. through 
sub-domains, overlap of compute 
and communications 

•  Work with co-design applications to 
consider alternative algorithms 

•  Crucial we understand maximum 
performance before very major 
application redesigns undertaken 
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ECMWF 
 
An independent 
intergovernmental 
organisation 
 
established in 1975 
 
with 
19 Member States 
15 Co-operating States 
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IFS model: current and planned model resolutions 

45 

IFS model 
resolution 

Envisaged 
Operational 

Implementation 

Grid point 
spacing (km) 

Time-step 
(seconds) 

T1279 2010 16 600 

T2047 2014-2015 10 450 

T3999 2020-2021 5 240 

T7999 2025-2026 2.5 120 
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IFS model speedup on IBM Power6 (~2010) 
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Computational Cost at T2047 and T3999 
 

47 

GP_DYN 
SP_DYN 
TRANS 
Physics 
WAM 
other 

Hydrostatic TL2047 Non-Hydrostatic TL3999 

Tstep=240s, 13.6s/Tstep 
With 512x16 ibm_power6 Tstep=450s, 5.8s/Tstep 

With 256x16 ibm_power6 
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Comms 

Comps 

H TL2047    ~2015 NH TL3999    ~2020 

Data sent/received:  289.6GB/s Data sent/received:  117.8GB/s 

Breakdown of TRANS cost: Computations vs. Communications 
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Planned IFS optimisations for [Tera,Peta,Exa]scale 
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        Grid-point space 
   -semi-Lagrangian advection 
   -physics 
   -radiation 
   -GP dynamics 

Fourier space 

       Spectral space 
   -horizontal gradients 
   -semi-implicit calculations  
   -horizontal diffusion 

FTDIR 
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FTINV 

LTINV 

Fourier space 

trmtol trltom 

trltog trgtol 
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Overlap Legendre transforms with associated transpositions 
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Overlap Legendre transforms with associated transpositions/2 
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52 
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Final words 

•  HECToR has been a challenging, exciting service to deliver 

•  It’s grown from 12,000 to 90,000 cores 

•  Huge variety of science is performed on HECToR every day 

•  But parallel supercomputing in the next decade faces many 
challenges 

•  We’ve reached the Petascale incrementally – we can’t take the same 
route to Exascale 

•  Supercomputing faces its biggest challenge since the 1980s 

 

    … when will Edinburgh host an Exascale computer? 
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Thank you! 


