The new UK National High Performance Computing Service

Dr Mark Parsons Commercial Director, EPCC m.parsons@epcc.ed.ac.uk

Summary

- Why we need supercomputers
- The HECToR Service
- Technologies behind HECToR
- Who uses HECToR
- The challenges facing supercomputing
- A sneak preview
- Concluding remarks

Many thanks: Mike Brown, Alan Gray, Fiona Reid and Alan Simpson - EPCC Jason Beech-Brandt - Cray Inc.

A brief history of science

- Science has evolved for 2,500 years
- First there was THEORY
- Led by the Greeks in 500BC

- Then there was EXPERIMENT
- Developed in Europe from 1600AD
- Since 1980s we have also had SIMULATION
- Edinburgh can rightfully claim to be world leading
- We use simulation for problems that are too big,
 too small, too distant, too quick, too slow to experiment with
- Computational science has driven high performance computing for the past 30 years

EPCC

- The University of Edinburgh founded EPCC in 1990 to act as the focus for its interests in simulation
- Today, EPCC is the leading centre for computational science in Europe
- 80 permanent staff
- Managing all UK national HPC facilities
- Work 50:50 academia and industry
- Aim is to rival the big US centres
- eg. NCSA at the University of Illinois
- In 2007 we won the contract to host the new UK National Service HPC service - HECToR

20 years of hardware

20 years of hardware

The HECToR Service

- HECToR: High End Computing Terascale Resource
- Procured for UK scientists by Engineering and Physical Sciences Research Council - EPSRC
- Competitive process involving three procurements
- Hardware - CRAY
- Accommodation and Management - UOE HPCX LTD
- Computational Science and Engineering Support - NAG
- EPCC won the A\&M procurement through its company UoE HPCx Ltd
- HECToR is located at The University of Edinburgh

Contractual Structure and Roles

- UoE HPCx Ltd already holds contract for HPCx service
- Wholly-owned subsidiary of University of Edinburgh
- UoE HPCx Ltd awarded main contract for HECToR Service Provision
- Runs from 2007 to 2013
- Subcontracts: Hardware (Cray), Helpdesk (EPCC), Systems (EPCC+DL)
- CSE support from NAG is separate
- Total contract value is around $£ 115$ million

HECToR Installation Timeline

February 2007

Signing of HECToR Contracts

Edinburgh: laying foundations for new plant room

Chippewa Falls, WI: XT4 Cabinets being assembled

HECToR Installation Timeline

April 2007

Edinburgh: Test and Development System (one XT4 cabinet) installed

August 2007

Edinburgh: Full 60 Cabinet System installed

HECToR at the ACF

HECToR at the ACF

Advanced Computing Facility

- Constructed 1976 for the University of Edinburgh
- 1×600 m²2 Computer Room
- 24-stage DX-based cooling servicing the room through 4 vast walk-in air-handling units
- "conventional" downflow system
- Refurbished 2004 as the Advanced Computing Facility
- 2×300 m2 Computer Rooms (one active, one empty concrete shell)
- all new chilled-water based plant services, with capacity of 1.2MW
- Major expansion 2007 for HECToR
- 2nd Computer Room brought into operation
- new-build external plant room to support massive uplift in required capacity
- new HV electrical provision (up to 7MW)

Power and Cooling

Power and Cooling

ATlum tinas

$5+3$

\square

Two national services

- HPCx (Phase 3): 160 IBM e-Server p575 nodes
- SMP cluster, 16 Power5 1.5 GHz cores per node
- 32 GB of RAM per node (2 GB per core)
- 5TB total RAM
- IBM HPS interconnect (aka Federation)

- 12.9 TFLOP/s Linpack, No 101 on top500
- HECToR (Phase 1): Cray XT4
- MPP, 5664 nodes, 2 Opteron 2.8 GHz cores per node
- 6 GB of RAM per node (3 GB per core)
- 33TB total RAM
- Cray Seastar2 torus network
- 54.6 TFLOP/s Linpack, No 17 on top500

The old and the new (cont)

	HPCx	HECToR
Chip	IBM Power5 (dual core)	AMD Opteron (dual core)
Clock	1.5 GHz	2.8 GHz
FPUs	2 FMA	$1 \mathrm{M}, 1 \mathrm{~A}$
Peak Perf/core	$6.0 \mathrm{GFlop} / \mathrm{s}$	$5.6 \mathrm{GFlop} / \mathrm{s}$
cores	2560	11328
Peak Perf	$15.4 \mathrm{TFLOP} / \mathrm{s}$	$63.4 \mathrm{TFLOP} / \mathrm{s}$
Linpack	$12.9 \mathrm{TFLOP} / \mathrm{s}$	$54.6 \mathrm{TFLOP} / \mathrm{s}$

The Cray XT4 Processing Element

Copyright (c) 2008 Cray Inc.

Scalable Software Architecture: UNICOS $\$ c$

- Microkernel on Compute PEs, full featured Linux on Service PEs.
- Service PEs specialize by function
- Software Architecture eliminates OS "Jitter"
- Software Architecture enables reproducible run times
- Large machines boot in under 30 minutes, including filesystem

Technology refreshes

- Cray have 4-year contract for hardware provision
- Plus possible extension for years 5 and 6
- Phase 1 (accepted: September 2007):
- 60TFlop Cray XT4
- Vector system (installed last week)
- 2TFlop Cray X2 vector system (a "BlackWidow")
- Phase 2 (installation: Summer 2009):
- ~60Tflop Cray XT4 (quadcore upgrade)
- ~200TFlop Cray (tba)
- Phase 3 (installation: Summer 2011):
- technology supplier subject to future tender
- anticipate infrastructure requirements approx as per Phase 2

Cray XT4 Quadcore Node

- 4-way SMP
- >35 Gflops per node
- Up to 8 GB per node
- OpenMP Support within socket

Cray XT5 Quadcore Node

6.4 GB/sec direct connect HyperTransport

- 8-way SMP
- >70 Gflops per node
- Up to 32 GB of shared memory per node
- OpenMP Support

Hybrid Systems

First, a workflow within a homogeneous environment

Copyright (c) 2008 Cray Inc.

Hybrid Systems

Now, the same workflow within a heterogeneous environment

Copyright (c) 2008 Cray Inc.

HECToR the Hybrid

- With the addition of the X2 last week - HECToR is Cray's first commercial hybrid system worldwide
- Clock speed, memory bandwidth, heat and power issues are driving people to look at new HPC solutions

Who uses HECToR?

- Early user service opened in September 2007
- Full service opened on $15^{\text {th }}$ October 2007
- Now have over 400 users with around 84% utilisation
- A wide variety of scientific consortia use the system
- Industry use now beginning

Who uses HECToR?

Fluid dynamics - Ludwig

- Ludwig

- Lattice Boltzmann code for solving the incompressible Navier-Stokes equations
- Used to study complex fluids
- Code uses a regular domain decomposition with local boundary exchanges between the subdomains
- Two problems considered, one with a binary fluid mixture, the other with shear flow

Fusion

- Centori
- simulates the fluid flow inside a tokamak reactor developed by UKAEA Fusion in collaboration with EPCC
- GS2
- Gyrokinetic simulations of lowfrequency turbulence in tokamak developed by Bill Dorland et al.
ITER tokamak reactor (www.iter.org)

Ocean Modelling: POLCOMS

- Proudman Oceanographic Laboratory Coastal Ocean Modelling System (POLCOMS)
- Simulation of the marine environment
- Applications include coastal engineering, offshore industries, fisheries management, marine pollution monitoring, weather forecasting and climate research
- Uses 3-dimensional hydrodynamic model

Molecular dynamics

Protein Dihydrofolate Reductase

- DL_POLY
- general purpose molecular dynamics package which can be used to simulate systems with very large numbers of atoms
- LAMMPS
- Classical Molecular Dynamics - can simulate wide range of materials
- NAMD
- classical molecular dynamics code designed for high-performance simulation of large biomolecular systems
- AMBER
- General purpose biomolecular simulation package
- GROMACS
- General purpose MD package specialises in biochemical systems, e.g. protiens, lipids etc

A parallel future?

- There are many challenges facing HPC today
- As processors have grown faster they've got hotter
- Manufacturers have responded with multicore processors
- We've entered a second golden age of parallelism
- But
- Multicore processors are generally clocked slower than single core
- Memory bandwidth is not increasing commensurately
- It takes considerable effort to parallelise a code
- Many codes do not scale

Dual Core v. Quad Core

Dual Core

- Core
- 2.6Ghz clock frequency
- SSE SIMD FPU (2flops/cycle = 5.2GF peak)
- Cache Hierarchy
- L1 Dcache/lcache: 64k/core
- L2 D/I cache: 1M/core
- SW Prefetch and loads to L1
- Evictions and HW prefetch to L2
- Memory
- Dual Channel DDR2
- 10GB/s peak @ 667MHz
- 8GB/s nominal STREAMs
- Power
- 103W

Quad Core

- Core
- 2.1Ghz clock frequency
- SSE SIMD FPU (4flops/cycle = 8.4GF peak)
- Cache Hierarchy
- L1 Dcache/lcache: 64k/core
- L2 D/I cache: 512 KB/core
- L3 Shared cache 2MB/Socket
- SW Prefetch and loads to L1,L2,L3
- Evictions and HW prefetch to L1,L2,L3
- Memory
- Dual Channel DDR2
- 12GB/s peak @ 800MHz
- 10GB/s nominal STREAMs
- Power
- 75W

Power and cooling

- New 470m² plant room for HECToR - $1.5 x$ the area of the room it services
- UPS provides 10-20 mins autonomy - must keep cooling running when powering HECToR - diesel engines
- Currently HECToR uses around 1.2MW
- We have provision at the ACF up to 7MW
- Rack power continues to increase:
- 2002 - IBMp690 10kW per rack

- 2007 - HECToR Phase 1 18kW per rack
- 2009 - HECToR Phase 2 38kW per rack (estimate)
- Now at limits of direct air cooling - next generation must use water cooling - much more efficient

Power and cooling (cont)

- The average off-coil air temperature is maintained with ease in the range: $12.7^{\circ}-13.3^{\circ}$ (in excess of design spec)
- The average chilled-water flow temperature is maintained in the range: $7.7^{\circ}-8.3^{\circ}$ (load independent)
- The average chilled-water return temperature is maintained in the range: $13.7^{\circ}-14.3^{\circ}$
- $60 \mathrm{~m}^{3}$ per sec of air at mean 13° is supplied into the sub-floor
- Chilled-water flow rate is maintained at 40 litres per second
- 144,000 litres per hour
- Because we use "free cooling" when possible the cooling overhead can be brought well below 20\% over the year

Parallel scaling

- To make use of highly parallel systems the performance of a code must scale linearly with the number of processors it is executed on
- Many do not - due to
- Memory bandwidth issues in an SMP environment
- While Taiwanese memory producers are producing bigger and bigger devices they're not getting faster
- Communication latency and bandwidth issues
- A key problem facing many commercial simulation codes (known as ISV codes) is scalability
- Many ISV codes only scale to 16-32 processors

A room full of PCs is not a supercomputer

- HECToR is expensive because of its communications network
- Designed for
- High bandwidth
- Low latency
- Mandatory requirement to scale
 to $10,000+$ cores

A sneak preview

- EPCC has a unique opportunity to work with ISVs and industry users to improve their use of highly parallel systems
- Over the next 6 months we're creating the EPCC Industry Simulation Centre
- Drivers
- Our existing work with companies over past 18 years - 50% of our £4.7million turnover comes from working with industry
- Pay-per-use access machines - HECToR, HPCx, Bluegene/L etc
- Our expertise in optimising and scaling codes for our scientific users
- Much greater use of simulation by large companies
- Too little use by smaller Scottish companies
- Our relationships with hardware vendors - Cray, IBM etc
- Our desire to prepare for a Petascale system in 2010

The ISC Ecosystem

- SE funding to engage Scottish business
- Builds on existing infrastructure
- Once established - income from cycle sales will feed back into ISV code work
- Strong sales and marketing activity
- Need to partner with hardware vendors to use their ISV contacts
- ISV codes and bespoke codes

Conclusion

- At 60 TFlops, HECToR is one of the most powerful computers in the world today
- It's a fantastic asset for Scotland
- It serves the UK scientific community and the business community
- We're at a very interesting moment in computing
- The days of easy programmability are over
- We're entering a new golden age of parallel computing!

Thanks and questions

