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Presentation Structure

The memory wall/von Neumann bottleneck
Processing In Memory (PIM)
Cellular Architectures
Cyclops/DIMES
Gilgamesh
Shamrock
picoChip
Questions? (ask as we go along and We’ll also leave time 
for questions at then end of this presentation)
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The memory wall

Today’s processors are 10 times faster than processors of only 5 years
ago.

But today’s processors do not perform at 1/10
th of the time of processors 

from 5 years ago.

CPU speeds double approximately every eighteen months, while main 
memory speeds double only about every ten years.

This causes a bottle-neck in the memory subsystem, which impacts on 
overall system performance.
The “memory wall” or the “Von Neumann bottleneck”.
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The memory wall

In today’s processors RAM roughly holds 1% of 
the data stored on a hard disk drive. 

And hard disk drives supply data nearly a thousand 
times slower than a processor can use it. 

This means that for many data requests, a processor 
is idle while it waits waiting for data to be found 
and transferred. 
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The memory wall

IBM’s vice president Mark Dean has said:
"What's needed today is not so much the ability 
to process each piece of data a great deal, it's 
the ability to swiftly sort through a huge amount 
of data." 
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Overcoming the memory wall

Mark Dean again:
"The key idea is that instead of focusing on processor 
micro-architecture and structure, as in the past, we 
optimize the memory system's latency and throughput—
how fast we can access, search and move data …" 

Leads to the concept of Processing In Memory 
(PIM).
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Processing in memory

The idea of PIM is to overcome the 
bottleneck between the processor and main 
memory by combining a processor and 
memory on a single chip.
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Processing in memory

In a PIM architecture:
the CPUs are much closer electrically to the memory 
arrays containing instructions and data, 

the number of bits available from each access can be 
literally orders of magnitude greater than can be 
transferred in a single clock cycle from today's 
conventional memory chip to today's conventional (and 
separate) CPU chip or cache system.
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Processing in memory

The benefits of a PIM architecture are:
reduced memory latency,
increases memory bandwidth,
simplifies the memory hierarchy,
provides multi-processor scaling capabilities

Cellular architectures,

avoids the Von Neumann bottleneck.
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Processing in memory

This means that:
much of the expensive memory hierarchy can be 
dispensed with,
CPU cores can be replaced with simpler designs,
less power is used by PIM,
less silicon space is used by PIM.
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Processing in memory

Reduced latency:
In PIM architectures accesses from the processor to memory:

do not have to go through multiple memory levels (caches), 
do not have to travel along a printed circuit line,
do not have to be reconverted back down to logic levels,
do not have to be re-synchronised with a local clock.

Currently there is about an order of magnitude reduction in latency
thereby reducing the impact of the memory wall problem.
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Processing in memory

Power:
by simplifying the architectural design of PIM leads to a less 
complex architecture and reduces the amount of silicon space 
consumed,

the greater the architectural design complexity the greater the 
amount of power consumed and the greater the amount of silicon 
space consumed,

therefore PIM reduces power consumption and reduces the amount 
of silicon space consumed when compared with a typical complex 
architecture.
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Processing in memory

But …
processor speed is reduced,
and the amount of available memory is reduced.

However, PIM is easily scaled:
multiple PIM chips connected together forming a 
network of PIM cells,

such scaled architectures are called Cellular 
architectures.
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Cellular architectures

Cellular architectures consist of a high number of  
cells (PIM units):

with tens of thousands up to one million  processors,

each cell (PIM) is small enough to achieve extremely 
large-scale parallel operations,

to minimise communication time between cells, each cell 
is only connected to its neighbours. 
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Cellular architectures

Cellular architectures are fault tolerant:
with so many cells, it is inevitable that some processors 
will fail,
cellular architecture simply re-route instructions and data 
around failed cells .

Cellular architectures are ranked highly as today’s 
Supercomputers.



16

Cellular architectures

Cellular architectures are threaded:
each thread unit is independent of all other thread units,
each thread unit serves as a single in-order issue 
processor,
each thread unit shares computationally expensive 
hardware such as floating-point units,
there can be a large number of thread units (1,000s if not 
100,000s of thousands) – therefore they are massively 
parallel architectures.
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Cellular architectures

Cellular architectures have irregular memory 
access:

some memory is very close to the thread units 
and is extremely fast,
some is off-chip and slow.

Cellular architectures, therefore, use caches 
and have a memory hierarchy.
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Cellular architectures

In Cellular architectures multiple thread units 
perform memory accesses independently.

This means that the memory subsystem of 
Cellular architectures do in fact require some 
form of memory access model that permits 
memory accesses to be effectively served. 
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Cellular architectures

Uses of Cellular architectures:
games machines (simple Cellular architecture),
bioinformatics (protein folding),
imaging,

satellite,
medical,
etcetera.

research,
etcetera.
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Cellular architectures

Examples:
Bluegene Project

Cyclops (IBM)
DIMES

Gilgamesh (NASA)
Shamrock (Notre Dame)
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Cyclops

Developed by IBM at the Tom Watson 
Research Center.

Also called Bluegene/C in comparison 
with the later version of Bluegene/L.
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Cyclops

The idea of Cyclops is to provide around one 
million processors:

Where each processor can perform a billion operations 
per second,

Which means that Cyclops will be capable of one 
petaflop of computations per second (a thousand trillion 
calculations per second).
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Logical View of the Cyclops64 Chip Architecture
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MSOffice2

Processors : 80 / chip
Thread Units (TU) : 2 / processor
Floating-Point Unit (FPU) : 1 / processor
Shared Registers (SR) : 0 / processor
Scratch-Pad Memory (SP) : n KB / TU

On-chip Memory (SRAM) : 160 x 28KB = 4480 KB
Off-chip Memory (DDR2) : 4 x 256MB  = 1GB
Hard Drive (IDE) : 1 x 120GB  = 120 GB
SP is located in the memory banks and is accessed directly by the TU and  
via the crossbar network by the other TUs.
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MSOffice2 NOTE ABOUT SCRATCH-PAD MEMORIES:

There is one memory bank(MB) per TU on the chip. One part of the MB is reserved for the SP of the corresponding TU. The size of the
SP is customizable.

The TU can access its SP directly without having to use the crossbar network with a latency of 3/2 for ld/st. The other TUs can access 
the SP of another TU by accessing the corresponding MB through the network with a latency of 22/11 for ld/st. Even TUs from the 
same processor must use the network to access the SPs of each other.

The memory bank can support only one access per cycle. Therefore if a TU accesses its SP while another TU accesses the same SP 
through the network, some arbitration will occur and one of the two accesses will be delayed.
 , 03/10/2003
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DIMES

Delaware Interactive Multiprocessor 
Emulation System (DIMES):

under development by Prof Guang Gao’s
research group - the Computer Architecture and 
Parallel Systems Laboratory (CAPSL) at the 
University of Delaware, Newark, DE. USA.
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DIMES

DIMES:
is the first hardware implementation of a Cellular 
architecture,
is a simplified ‘cut-down’ version of Cyclops,
is hardware validation tool for Cellular architectures,
emulates Cellular architectures, in particular Cyclops, 
cycle-by-cycle, 
is implemented on at least one FPGA,
has been evaluated by Jason McGuiness.
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DIMES

The DIMES implementation that Jason evaluated:
supports a P-thread programming model,
is a dual processor where each processor has four thread units, 
has 4K of scratch-pad (local) memory per thread unit,
has two banks of 64K global shared memory,
has different memory models: 

scratch pad memory obeys the program consistency model for all of the 
eight thread units,
global memory obeys the sequential consistency model for all of the 
eight thread units,

is called DIMES/P2.
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DIMES

DIMES/P2
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Jason’s Work with DIMES

Jason’s concerns were:
how to manage a potentially large number of 
threads?
how to exploit parallelism from the input source 
code in these threads.
how to manage memory consistency?
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Jason’s Work with DIMES

Jason’s tested his concerns by using an “embarrassingly 
parallel program which generated Mandelbrot sets.”

Jason’s approach was to distribute the work-load between 
threads and he also implemented a work-stealing algorithm 
to balance loads between threads:

when a thread completed its ‘work-load’, rather than remain idle that 
thread would ‘steal-work’ from another ‘busy’ thread,
this meant that he maximised parallelism and improved thread 
performance and hence overall program execution time.
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Jason’s Work with DIMES

Shortly after program start Shortly before work stealing

Just after work stealing More work stealing
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Gilgamesh

Is being developed by NASA.

Billions of Logic Gate Assemblies through 
MESH interconnect.

Is a PIM-based massively parallel 
architecture.
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Gilgamesh System Architecture

Is a collection of MIND chips that are 
interconnected by a system network.

MIND: Memory Intelligence Network Device.

Each MIND chip contains:
Multiple banks of D-RAM storage,
Processing logic,
External I/O interfaces,
Inter-chip communication channels.
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Gilgamesh System Architecture
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MIND Chip

Each MIND chip is multithreaded.

MIND chips communication:
via parcels (special classes of active messages that 
support message driven computation),

a parcel can be used to perform conventional operations 
as well as invoking methods on a remote chip.
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MIND Chip Architecture
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MIND Chip Architecture

Nodes provide storage, information processing and 
execution control.
Local wide registers serve as:

thread state, instruction-cache, vector memory row buffer.
A wide ALU performs multiple operations on separate field 
simultaneously.
A system memory bus interface connects MIND to 
workstation and server motherboard.
A data streaming interface deals with rapid high data 
bandwidth movement.
On-chip communication interconnects allow sharing of 
pipelined FPUs between nodes.
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MIND Node Structure
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MIND Node Structure

Integrating memory blocks with processing logic 
and control mechanisms.
The wide ALU is 256 bits wide, supporting 
multiple operations.
The ALU does not provide explicit floating point 
operations.
A Permutation Network rearranges bytes in a 
complete row.
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MIND PIM Architecture

High degree of memory bandwidth is achieved by:
accessing an entire memory row at a time (exploiting 
data parallelism),
partitioning the total memory into multiple independently 
accessible blocks (multiple memory banks).

Therefore:
memory bandwidth is a square order over an off-chip 
memory architecture,
there is reduced latency.
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Parcels

A variable length of communication packet that contains 
sufficient information to perform a remote procedure 
invocation.

It is targeted to a virtual address which may identify 
individual variables, blocks of data, structures, objects, or 
threads, I/O streams.

Parcel fields mainly contain: destination address, parcel 
action specifier, parcel argument, continuation, and 
housekeeping.
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Multithreaded Execution

Each thread resides in a MIND node wide register.

The multithread controller determines:
when the thread is ready to perform next operation,
which resource will be required and allocated.

Threads can be created, terminated/destroyed, 
suspended, and stored.
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Shamrock Notre Dame

A PIM architecture developed at the 
University of Notre Dame.
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Shamrock Architecture Overview
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Node Structure
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Node Structure

A node consists of logic for a CPU, four arrays of 
memory and data routing:

two separately addressable memories on each face of the 
CPU.

Each memory array is made up of multiple sub-
units: 

allows all bits read from a memory in one cycle to be 
available at the same time to the CPU logic.
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Shamrock Chip

Nodes are arranged in rows, staggering so 
that the two memory arrays on one side of 
one node impinge directly on the memory 
arrays of two different nodes in the next row:

each CPU has a true shared memory interface 
with four other CPUs.
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Shamrock Chip Architecture

A PIM architecture developed in the 
University of Notre Dame



48

Shamrock Chip

Off-chip connections can:
connect to adjoining chips in the same tile 
topology,
allow a processor on the outside to view the chip 
as memory in the conventional sense.
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picoChip

picoChip are based in Bath
“… is dedicated to providing fast, flexible 
wireless solutions for next generation 
telecommunications systems.”
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picoChip

picoArrayTM

Is a tiled architecture,
308 heterogeneous processors connected 
together,
The interconnects consist of bus switches joined 
by picoBusTM,
Each processor is connected to the picoBusTM

above and below it.
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picoChip

picoArrayTM
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Summary

In this talk we have justified the reasons for Processing In 
Memory (PIM) and therefore cellular architectures.

We have briefly looked at four example architectures:
Cyclops,
Gilgamesh, 
Shamrock,
picoChip.

Jason has worked on DIMES, the first implementation of a 
(cut-down) version of a cellular architecture.
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Massively Parallel Architectures

Questions?

Colin Egan, Jason McGuiness and Michael Hicks
(Compiler Technology and 

Computer Architecture Research Group)
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