
1

Massively Parallel Architectures

Colin Egan, Jason McGuiness and Michael Hicks
(Compiler Technology and

Computer Architecture Research Group)

2

Presentation Structure

The memory wall/von Neumann bottleneck
Processing In Memory (PIM)
Cellular Architectures
Cyclops/DIMES
Gilgamesh
Shamrock
picoChip
Questions? (ask as we go along and We’ll also leave time
for questions at then end of this presentation)

3

The memory wall

Today’s processors are 10 times faster than processors of only 5 years
ago.

But today’s processors do not perform at 1/10
th of the time of processors

from 5 years ago.

CPU speeds double approximately every eighteen months, while main
memory speeds double only about every ten years.

This causes a bottle-neck in the memory subsystem, which impacts on
overall system performance.
The “memory wall” or the “Von Neumann bottleneck”.

4

The memory wall

In today’s processors RAM roughly holds 1% of
the data stored on a hard disk drive.

And hard disk drives supply data nearly a thousand
times slower than a processor can use it.

This means that for many data requests, a processor
is idle while it waits waiting for data to be found
and transferred.

5

The memory wall

IBM’s vice president Mark Dean has said:
"What's needed today is not so much the ability
to process each piece of data a great deal, it's
the ability to swiftly sort through a huge amount
of data."

6

Overcoming the memory wall

Mark Dean again:
"The key idea is that instead of focusing on processor
micro-architecture and structure, as in the past, we
optimize the memory system's latency and throughput—
how fast we can access, search and move data …"

Leads to the concept of Processing In Memory
(PIM).

7

Processing in memory

The idea of PIM is to overcome the
bottleneck between the processor and main
memory by combining a processor and
memory on a single chip.

8

Processing in memory

In a PIM architecture:
the CPUs are much closer electrically to the memory
arrays containing instructions and data,

the number of bits available from each access can be
literally orders of magnitude greater than can be
transferred in a single clock cycle from today's
conventional memory chip to today's conventional (and
separate) CPU chip or cache system.

9

Processing in memory

The benefits of a PIM architecture are:
reduced memory latency,
increases memory bandwidth,
simplifies the memory hierarchy,
provides multi-processor scaling capabilities

Cellular architectures,

avoids the Von Neumann bottleneck.

10

Processing in memory

This means that:
much of the expensive memory hierarchy can be
dispensed with,
CPU cores can be replaced with simpler designs,
less power is used by PIM,
less silicon space is used by PIM.

11

Processing in memory

Reduced latency:
In PIM architectures accesses from the processor to memory:

do not have to go through multiple memory levels (caches),
do not have to travel along a printed circuit line,
do not have to be reconverted back down to logic levels,
do not have to be re-synchronised with a local clock.

Currently there is about an order of magnitude reduction in latency
thereby reducing the impact of the memory wall problem.

12

Processing in memory

Power:
by simplifying the architectural design of PIM leads to a less
complex architecture and reduces the amount of silicon space
consumed,

the greater the architectural design complexity the greater the
amount of power consumed and the greater the amount of silicon
space consumed,

therefore PIM reduces power consumption and reduces the amount
of silicon space consumed when compared with a typical complex
architecture.

13

Processing in memory

But …
processor speed is reduced,
and the amount of available memory is reduced.

However, PIM is easily scaled:
multiple PIM chips connected together forming a
network of PIM cells,

such scaled architectures are called Cellular
architectures.

14

Cellular architectures

Cellular architectures consist of a high number of
cells (PIM units):

with tens of thousands up to one million processors,

each cell (PIM) is small enough to achieve extremely
large-scale parallel operations,

to minimise communication time between cells, each cell
is only connected to its neighbours.

15

Cellular architectures

Cellular architectures are fault tolerant:
with so many cells, it is inevitable that some processors
will fail,
cellular architecture simply re-route instructions and data
around failed cells .

Cellular architectures are ranked highly as today’s
Supercomputers.

16

Cellular architectures

Cellular architectures are threaded:
each thread unit is independent of all other thread units,
each thread unit serves as a single in-order issue
processor,
each thread unit shares computationally expensive
hardware such as floating-point units,
there can be a large number of thread units (1,000s if not
100,000s of thousands) – therefore they are massively
parallel architectures.

17

Cellular architectures

Cellular architectures have irregular memory
access:

some memory is very close to the thread units
and is extremely fast,
some is off-chip and slow.

Cellular architectures, therefore, use caches
and have a memory hierarchy.

18

Cellular architectures

In Cellular architectures multiple thread units
perform memory accesses independently.

This means that the memory subsystem of
Cellular architectures do in fact require some
form of memory access model that permits
memory accesses to be effectively served.

19

Cellular architectures

Uses of Cellular architectures:
games machines (simple Cellular architecture),
bioinformatics (protein folding),
imaging,

satellite,
medical,
etcetera.

research,
etcetera.

20

Cellular architectures

Examples:
Bluegene Project

Cyclops (IBM)
DIMES

Gilgamesh (NASA)
Shamrock (Notre Dame)

21

Cyclops

Developed by IBM at the Tom Watson
Research Center.

Also called Bluegene/C in comparison
with the later version of Bluegene/L.

22

Cyclops

The idea of Cyclops is to provide around one
million processors:

Where each processor can perform a billion operations
per second,

Which means that Cyclops will be capable of one
petaflop of computations per second (a thousand trillion
calculations per second).

23

Logical View of the Cyclops64 Chip Architecture

Processor

ChipBoard

Crossbar Network

TU TU TU…

SP SP SP

FPU SR

TU TU TU…

SP SP SP

FPU SR

TU TU TU…

SP SP SP

FPU SR

…

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

M
EM

O
R

Y
B

A
N

K

…

6 * 4 GB/sec

4 GB/sec

50 MB/sec

1 Gbits/sec

O
ff-

C
hi

p
M

em
or

y

Other
Chips via
3D mesh

O
ff-

C
hi

p
M

em
or

y
O

ff-
C

hi
p

M
em

or
y

O
ff-

C
hi

p
M

em
or

y

IDE
HDD

4 GB/sec

6 * 4 GB/sec

SP SP SP SP SP SP SP SP

MSOffice2

Processors : 80 / chip
Thread Units (TU) : 2 / processor
Floating-Point Unit (FPU) : 1 / processor
Shared Registers (SR) : 0 / processor
Scratch-Pad Memory (SP) : n KB / TU

On-chip Memory (SRAM) : 160 x 28KB = 4480 KB
Off-chip Memory (DDR2) : 4 x 256MB = 1GB
Hard Drive (IDE) : 1 x 120GB = 120 GB
SP is located in the memory banks and is accessed directly by the TU and
via the crossbar network by the other TUs.

Slide 23

MSOffice2 NOTE ABOUT SCRATCH-PAD MEMORIES:

There is one memory bank(MB) per TU on the chip. One part of the MB is reserved for the SP of the corresponding TU. The size of the
SP is customizable.

The TU can access its SP directly without having to use the crossbar network with a latency of 3/2 for ld/st. The other TUs can access
the SP of another TU by accessing the corresponding MB through the network with a latency of 22/11 for ld/st. Even TUs from the
same processor must use the network to access the SPs of each other.

The memory bank can support only one access per cycle. Therefore if a TU accesses its SP while another TU accesses the same SP
through the network, some arbitration will occur and one of the two accesses will be delayed.
 , 03/10/2003

24

DIMES

Delaware Interactive Multiprocessor
Emulation System (DIMES):

under development by Prof Guang Gao’s
research group - the Computer Architecture and
Parallel Systems Laboratory (CAPSL) at the
University of Delaware, Newark, DE. USA.

25

DIMES

DIMES:
is the first hardware implementation of a Cellular
architecture,
is a simplified ‘cut-down’ version of Cyclops,
is hardware validation tool for Cellular architectures,
emulates Cellular architectures, in particular Cyclops,
cycle-by-cycle,
is implemented on at least one FPGA,
has been evaluated by Jason McGuiness.

26

DIMES

The DIMES implementation that Jason evaluated:
supports a P-thread programming model,
is a dual processor where each processor has four thread units,
has 4K of scratch-pad (local) memory per thread unit,
has two banks of 64K global shared memory,
has different memory models:

scratch pad memory obeys the program consistency model for all of the
eight thread units,
global memory obeys the sequential consistency model for all of the
eight thread units,

is called DIMES/P2.

27

DIMES

DIMES/P2

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Processor 0

64K Global
Memory

Thread Unit 0

4K Scratch pad

Thread Unit 1

4K Scratch pad

Thread Unit 2

4K Scratch pad

Thread Unit 3

4K Scratch pad

Network

Processor 1

28

Jason’s Work with DIMES

Jason’s concerns were:
how to manage a potentially large number of
threads?
how to exploit parallelism from the input source
code in these threads.
how to manage memory consistency?

29

Jason’s Work with DIMES

Jason’s tested his concerns by using an “embarrassingly
parallel program which generated Mandelbrot sets.”

Jason’s approach was to distribute the work-load between
threads and he also implemented a work-stealing algorithm
to balance loads between threads:

when a thread completed its ‘work-load’, rather than remain idle that
thread would ‘steal-work’ from another ‘busy’ thread,
this meant that he maximised parallelism and improved thread
performance and hence overall program execution time.

30

Jason’s Work with DIMES

Shortly after program start Shortly before work stealing

Just after work stealing More work stealing

31

Gilgamesh

Is being developed by NASA.

Billions of Logic Gate Assemblies through
MESH interconnect.

Is a PIM-based massively parallel
architecture.

32

Gilgamesh System Architecture

Is a collection of MIND chips that are
interconnected by a system network.

MIND: Memory Intelligence Network Device.

Each MIND chip contains:
Multiple banks of D-RAM storage,
Processing logic,
External I/O interfaces,
Inter-chip communication channels.

33

Gilgamesh System Architecture

34

MIND Chip

Each MIND chip is multithreaded.

MIND chips communication:
via parcels (special classes of active messages that
support message driven computation),

a parcel can be used to perform conventional operations
as well as invoking methods on a remote chip.

35

MIND Chip Architecture

36

MIND Chip Architecture

Nodes provide storage, information processing and
execution control.
Local wide registers serve as:

thread state, instruction-cache, vector memory row buffer.
A wide ALU performs multiple operations on separate field
simultaneously.
A system memory bus interface connects MIND to
workstation and server motherboard.
A data streaming interface deals with rapid high data
bandwidth movement.
On-chip communication interconnects allow sharing of
pipelined FPUs between nodes.

37

MIND Node Structure

38

MIND Node Structure

Integrating memory blocks with processing logic
and control mechanisms.
The wide ALU is 256 bits wide, supporting
multiple operations.
The ALU does not provide explicit floating point
operations.
A Permutation Network rearranges bytes in a
complete row.

39

MIND PIM Architecture

High degree of memory bandwidth is achieved by:
accessing an entire memory row at a time (exploiting
data parallelism),
partitioning the total memory into multiple independently
accessible blocks (multiple memory banks).

Therefore:
memory bandwidth is a square order over an off-chip
memory architecture,
there is reduced latency.

40

Parcels

A variable length of communication packet that contains
sufficient information to perform a remote procedure
invocation.

It is targeted to a virtual address which may identify
individual variables, blocks of data, structures, objects, or
threads, I/O streams.

Parcel fields mainly contain: destination address, parcel
action specifier, parcel argument, continuation, and
housekeeping.

41

Multithreaded Execution

Each thread resides in a MIND node wide register.

The multithread controller determines:
when the thread is ready to perform next operation,
which resource will be required and allocated.

Threads can be created, terminated/destroyed,
suspended, and stored.

42

Shamrock Notre Dame

A PIM architecture developed at the
University of Notre Dame.

43

Shamrock Architecture Overview

44

Node Structure

45

Node Structure

A node consists of logic for a CPU, four arrays of
memory and data routing:

two separately addressable memories on each face of the
CPU.

Each memory array is made up of multiple sub-
units:

allows all bits read from a memory in one cycle to be
available at the same time to the CPU logic.

46

Shamrock Chip

Nodes are arranged in rows, staggering so
that the two memory arrays on one side of
one node impinge directly on the memory
arrays of two different nodes in the next row:

each CPU has a true shared memory interface
with four other CPUs.

47

Shamrock Chip Architecture

A PIM architecture developed in the
University of Notre Dame

48

Shamrock Chip

Off-chip connections can:
connect to adjoining chips in the same tile
topology,
allow a processor on the outside to view the chip
as memory in the conventional sense.

49

picoChip

picoChip are based in Bath
“… is dedicated to providing fast, flexible
wireless solutions for next generation
telecommunications systems.”

50

picoChip

picoArrayTM

Is a tiled architecture,
308 heterogeneous processors connected
together,
The interconnects consist of bus switches joined
by picoBusTM,
Each processor is connected to the picoBusTM

above and below it.

51

picoChip

picoArrayTM

52

Summary

In this talk we have justified the reasons for Processing In
Memory (PIM) and therefore cellular architectures.

We have briefly looked at four example architectures:
Cyclops,
Gilgamesh,
Shamrock,
picoChip.

Jason has worked on DIMES, the first implementation of a
(cut-down) version of a cellular architecture.

53

Massively Parallel Architectures

Questions?

Colin Egan, Jason McGuiness and Michael Hicks
(Compiler Technology and

Computer Architecture Research Group)

	Massively Parallel Architectures
	Presentation Structure
	The memory wall
	The memory wall
	The memory wall
	Overcoming the memory wall
	Processing in memory
	Processing in memory
	Processing in memory
	Processing in memory
	Processing in memory
	Processing in memory
	Processing in memory
	Cellular architectures
	Cellular architectures
	Cellular architectures
	Cellular architectures
	Cellular architectures
	Cellular architectures
	Cellular architectures
	Cyclops
	Cyclops
	DIMES
	DIMES
	DIMES
	DIMES
	Jason’s Work with DIMES
	Jason’s Work with DIMES
	Jason’s Work with DIMES
	Gilgamesh
	Gilgamesh System Architecture
	Gilgamesh System Architecture
	MIND Chip
	MIND Chip Architecture
	MIND Chip Architecture
	MIND Node Structure
	MIND Node Structure
	MIND PIM Architecture
	Parcels
	Multithreaded Execution
	Shamrock Notre Dame
	Shamrock Architecture Overview
	Node Structure
	Node Structure
	Shamrock Chip
	Shamrock Chip Architecture
	Shamrock Chip
	picoChip
	picoChip
	picoChip
	Summary
	Massively Parallel Architectures

