
Jeepers GPars,
It's All So Easily Parallel

Russel Winder

email: russel@russel.org.uk
xmpp: russel@russel.org.uk  

twitter: russel_winder

mailto:russel@russel.org.uk


 Copyright © 2011 Russel Winder 2

Aims, Goals and Objectives

● Get people enthusiastic to use dataflow, actors and 
Communicating Sequential Processes (CSP) as their 
application structuring architecture.

● Get people enthusiastic to use GPars in all their Java 
and Groovy programming.

● Arrive at an hostelry in good time to have a nice drink 
and good conversation.



 Copyright © 2011 Russel Winder 3

Structure

● The Beginning.
● The Middle.
● The End.
● The Extra Questions.
● The Whisky.



 Copyright © 2011 Russel Winder 4

Protocol

● Interaction is allowed.  Actually it may well, 
possibly, be mandatory.

● If  an interjection leads to a “too long” side track, we 
will stack (or possibly even stash†) it for later.

†Depending on whether you want a code oriented
or a version control oriented metaphor.



 Copyright © 2011 Russel Winder 5

The Beginning



 Copyright © 2011 Russel Winder 6

In the Beginning: The Hardware

Processor

Memory

Single ALU



 Copyright © 2011 Russel Winder 7

In the Beginning: The Software

Load a program into the memory and
run it to completion.



 Copyright © 2011 Russel Winder 8

Multitasking Operating Systems

Load many programs into memory and
have one of then run at any one time.



 Copyright © 2011 Russel Winder 9

Concurrency

● Multitasking operating systems introduce the need 
for concurrency in a shared memory context.

● Tools for managing this are created:
● Locks
● Semaphores
● Monitors



 Copyright © 2011 Russel Winder 10

Higher Level Models

● Dataflow Model:
● Bert Sutherland, 1966.

● Actor Model:
● First published in 1973 by Carl Hewett, Peter Bishop and 

Richard Steiger – IJCAI.

● Communicating Sequential Processes (CSP):
● First published in a paper by Tony Hoare in 1978, but 

only really became well known with the 1983 book. 



 Copyright © 2011 Russel Winder 11

The Interregnum Begins

Programmers were taught that concurrent 
applications needed the same tools and 

techniques that operating system 
implementation needed:

Shared memory multi-threading.



 Copyright © 2011 Russel Winder 12

The Interregnum Reified

1995, Java reifies shared memory multithreading 
as the obviously known right way of dealing with 

concurrency…



 Copyright © 2011 Russel Winder 13

…after all C and C++ have been using pthreads 
(or the like) for many years.



 Copyright © 2011 Russel Winder 14

The Interregnum Reified, A Bit More

1995, Java reifies the mindset that concurrent 
programming is all about shared memory 

multithreading by putting it in the language…



 Copyright © 2011 Russel Winder 15

…it takes till 2011 for C++ to do the same.



 Copyright © 2011 Russel Winder 16

The Interregnum Continues

Programmers discover that shared-memory 
multithreading is hard† to get right: that trying 
to get things right with lock, semaphores and 

monitors is not entirely easy‡.



 Copyright © 2011 Russel Winder 17

†By hard, what is actually meant is usually:

Absolutely ####### impossible!



 Copyright © 2011 Russel Winder 18

‡Clearly “not entirely easy” is a euphemism,
see the previous slide for the

more appropriate description.



 Copyright © 2011 Russel Winder 19

Concurrency Eschewed

Programmers know concurrent and parallel 
programming is hard, so they don't do it.



 Copyright © 2011 Russel Winder 20

Why Bother?

Processor speeds double every couple of years, 
so single thread applications get twice as fast 

every two years, so who cares about concurrency 
and parallelism?



 Copyright © 2011 Russel Winder 21

Oh Dear

Processor speeds have to stop getting faster, 
Moore's Law still working, processor 

manufacturers start increasing the core count to 
use all the extra transistors they have.



 Copyright © 2011 Russel Winder 22

Multicore Revolution: The Early Period

Memory

Core CoreCoreCore Core CoreCoreCore



 Copyright © 2011 Russel Winder 23

The Hardware Con Job

Each processor has N ALUs and so executes N 
instructions per unit time so is N times faster 

than a single core processor.



 Copyright © 2011 Russel Winder 24

The Realization

For compute intensive applications, increased 
parallelism is now the only way to create 

increased application performance.



 Copyright © 2011 Russel Winder 25

The Mechanisms

Kernel threads mean that applications can 
harness real parallelism with threads not just 

time-division multiplexing concurrency.



 Copyright © 2011 Russel Winder 26

The Problem

Creating large, correct programs using shared 
memory multi-threading is:

Absolutely ####### impossible!



 Copyright © 2011 Russel Winder 27

The Middle



 Copyright © 2011 Russel Winder 28

Strategy

● Use high-level concurrency structures:
● Actors
● Dataflow
● Communicating Sequential Processes (CSP)
● Data Parallelism



 Copyright © 2011 Russel Winder 29

Actor Model

● A collection of processes that communicate by 
sending messages to each other.

● No global shared state.



 Copyright © 2011 Russel Winder 30

Dataflow Model

● A collection of processes that communicate by 
sending messages to each other.

● No global shared state. 



 Copyright © 2011 Russel Winder 31

Communicating Sequential Processes

● A collection of processes that communicate by 
sending messages to each other.

● No global shared state.



 Copyright © 2011 Russel Winder 32

So what is the difference?

It's all in the message passing and hence 
synchronization.

And turning threads into a hidden and managed 
resource. 



 Copyright © 2011 Russel Winder 33

The Abstract Model



 Copyright © 2011 Russel Winder 34

Actor Model

● Each actor has a message queue.
● Actors can send messages asynchronously to any 

other actor.
● Actors read messages from their message queues, do 

some work and send messages to other actors.



 Copyright © 2011 Russel Winder 35

Dataflow Model

● Each operator has a set of inputs:  single assignment 
variables, or a queue of such things.

● Operator block until a given state of its inputs and 
then “fires” creating values on its outputs.



 Copyright © 2011 Russel Winder 36

Communicating Sequential Processes

● Each process has a set of input channels.
● A process takes data from one of its channels 

synchronously (rendezvous), computes and then 
writes to one of its output channels. 



 Copyright © 2011 Russel Winder 37

Data Parallelism

● Data is in some array-like data structure.
● At each stage of a computation, a transformation is 

applied to all the items in the data structure.



 Copyright © 2011 Russel Winder 38

Sample Problems

● Sleeping Barber

● π by Quadrature



 Copyright © 2011 Russel Winder 39

The Sleeping Barber Problem

A barber sleeps in the cutting chair unless cutting someone's hair.  
Customers enter the shop: if the barber is asleep, the customer awakens 

the barber, sits in the chair and gets a cut; if the barber is cutting the 
customer checks to see if there is a free waiting chair, and if there is sits 
to wait their turn or if not leaves the shop, uncut.  On finishing a cut, the 
barber checks the waiting chairs to see if there is a new customer to cut.  
If there is, the customer moves to the cutting chair and gets a cut, if there 

isn't the barber takes the cutting chair and sleeps.

Problem believed to be originally due to Edsger Dykstra, 1965.
It is a model of  a process management problem in operating systems. 

http://en.wikipedia.org/wiki/Sleeping_barber_problem

http://en.wikipedia.org/wiki/Sleeping_barber_problem


 Copyright © 2011 Russel Winder 40

Operating Systems to Simulation

Implementing a solution to the problem in an 
operating systems context is essentially a

“solved” problem.

Extend the problem to be an example of  concurrency 
and possible parallelism in simulation of  a queueing 

problem, and as a vehicle for trying various 
technologies.



 Copyright © 2011 Russel Winder 41

The Abstract Model

Barber

Shop

World
Customer

Customer

SuccessfulCustomer

SuccessfulCustomer

Customer
or

Waiting Chairs
Customer



 Copyright © 2011 Russel Winder 42

π  By Quadrature


4
=∫0

1 1

1x2
dx

=
4
n
∑i=1

n 1

1
i−0.5
n


2



 Copyright © 2011 Russel Winder 43

The Code

Sleeping Barber : http://www.russel.org.uk/Bazaar/SleepingBarber

π By Quadrature: http://www.russel.org.uk/Bazaar/Pi_Quadrature

http://www.russel.org.uk/Bazaar/SleepingBarber
http://www.russel.org.uk/Bazaar/Pi_Quadrature


 Copyright © 2011 Russel Winder 44

The End



 Copyright © 2011 Russel Winder 45

Actors, dataflow, CSP, data parallelism are the high-
level abstractions.

Shared memory multi-threading is low-level 
infrastructure.



 Copyright © 2011 Russel Winder 46

C++, Java, Groovy, Python, etc. are high-level 
programming languages.

Assembly language is low-level infrastructure.



Copyright © 2011 It'z Interactive Ltd 47

Advertising

Python for Rookies

Sarah Mount, James Shuttleworth and
Russel Winder

Thomson Learning

Buy these books!Buy these books!

Now called Cengage Learning.

Developing Java Software Third Edition

Russel Winder and Graham Roberts

Wiley

http://www.pythonforrookies.org/
http://www.devjavasoft.org/


 Copyright © 2011 Russel Winder 48

The Extra Questions



 Copyright © 2011 Russel Winder 49

The Whisky


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

